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ABSTRACT

The problem of imaging a plgnetary surface is considered from the

point of view of continuous wave bistatic-radar in which transmissions

originating on the Earth (or on a spacecraft) would be received on a

spacecraft (or on the Earth) after reflection from a planetary surface.

An electromagnetic wave reflected by a planet may be considered as

a superposition of the waves from elementary scatterers on the surface.

Using a superposition model the ordinary radar brightness distribution,

the differential radar cross'section, the polar scattering diagram, and

the radar albedo of a surface are all related measures of the local sur-

face properties.

The surface brightness distribution may be determined by cross-

correlating the scattered fields (as measured by a spacecraft along some

fraction of its trajectory) with the expected signal from each point on

the surface. The predicted azimuthal resolution in wavelengths is in-

versely proportional to the angle subtended at the target point by the

fraction of the trajectory over which the data are taken; in range the

resolution in wavelengths is inversely proportional to the square of the

same angle. The feasibility of the method depends on the use of the il-

luminating wave on beard the spacecraft as a frequency reference to achieve

the requisite stability.

Physical analogs of the process exist as modifications of holograms

and synthetic antenna arrays. An additional analog is that of a bank of

tracking filters, each of which is adjusted to receive the signals from

a separate portion of the surface.

The maximum-likelihood estimator for the brightness of a specific

scattering area, in the presence of white Gaussian noise at low input

signal-to-noise ratios, is a Hilbert quadratic form with the expected

autocorrelation function of the signal from the scattering ares as a
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kernel. For maximumresolution (minimumarea) this is equivalent to the

cross-correlation method for obtaining the brightness distribution. Fur-

thermore, this estimate is efficient in the sense of being unbiased and

of having minimumvariance, for the low signal-to-noise ratio case.

The estimator maybe realized with well-known forms of time-varying
or time-invariant filters, or with correlators. A new realization is

that of a hologram scannedwith a properly weighted illuminating wave.

It is concluded that bistatic-radars operating between a ground

station and a vehicle in space constitute a powerful technique with which

to mapand to study planetary surfaces.
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I. INTRODUCTION

A. STIMULUS FOR THIS RESEARCH

The first radars, dating from experiments at the turn of the century

were bistatic in their operation. 1'2. That is, they were radars in which

the transmitter and receiver occupied not the same, but two separate,

remote, and generally fixed positions. Energy was continuously radiated

from the transmitting site, and target detection relied upon scattering

enough of the transmitted signal power into the receiving antenna by the

target to overcome the noise of the receiving system. The receiving

sites were usually effectively shielded from the transmitter, and target

detection was signaled by an increase in the power output of the receiver.

An alternative was to allow a small amount of power from the transmitter

to leak directly into the receiver. In this second case a Doppler-

shifted signal from a moving target appeared as a beat note st the Doppler

frequency. By the early 1930s, enough progress had been made to permit

1
the detection of aircraft at ranges of a few tens of miles.

Now, three decades later, astronomical bistatic radars, employing

transmissions between a station on the ground and a receiver on board a

spacecraft in interplanetary space, are being used as a scientific tool

to probe the electromagnetic properties of the intervening medium. These

experiments are characterized by the continuous presence at the receiver

of a strong signal, directly from the transmitter, which is examined for

perturbations in phase, amplitude, or polarization introduced by material
3

along the path followed by the wave. Independent measurements of two

or more of these signal characteristics made simultaneously on several

frequencies may be employed to magnify the effects of the medium and to

3
calibrate the experiment.

The concept of bistatic-radar for probing tenuous astronomical media

was quickly extended to include proposed experiments for determining the

properties of planetary atmospheres and ionospheres. 4'5 Here the experi-

menter makes use of his control over the spacecraft trajectory. By causing

the spacecraft to pass behind the planet, the propagation path between the

References are listed st the end of the report.

1 SEL-67-042



ground station and the vehicle is forced to slice through whatever sur-

rounding medium there may be. Since the spacecraft's position with

respect to the planet is well known, it is possible to associate the mea-

surements with particular paths through the medium and consequently with

particular portions of the atmosphere. The data obtained, together with

certain auxiliary information, are then used to establish the salient

physical and chemical properties of the atmosphere and ionosphere in-

volvedo 6'7

The next possibility is immediately clear: A spacecraft may serve

as one terminal of a bistatic-radar system for exploring the surface of

a planet. Either transmissions from the earth would be directed at the

planet and the scattered energy would be received on board the vehicle,

or energy directed toward the planet by the spacecraft would be received

on the ground after scattering from the surface. There are several rea-

sons to believe this will be useful.

1. Relative to purely passive observations, the probing signal is

under the experimenter's control, and its characteristics may

be chosen to maximize the experimental sensitivity to a given

surface property.

2. Relative to ground-based radars, (a) one leg of the radar path

may be made very short, thus increasing the signal strength at

the receiver, and (b) the angles of incidence and reflection

are variable, thus allowing the resolution of the surface-scat-

tering properties as a function of direction.

3. Relative to on-board radars, only a transmitter or a receiver

is required thus considerably reducing the weight, power con-

sumption, and complexity of the spaceborne equipment. If this

advantage is to be realized, then only one-way transmissions may

be used for the experiment: signals may go from the spacecraft

to the ground or vice versa. Data stored on the spacecraft will

be retrievable by telemetry.

4. Relative to optical measurements, radar may be the only means

for observing the surface of Venus for some time.

5. Signals reflected from the surface may be needed to remotely

probe the atmospheres of some planets below a critical refraction

level.

SEL-67-042 2



This research was instigated to determine if there were ways in

which the blstatlc technique could be used, extended, or modified to

realize the potentials listed above for the study of planetary surfaces.

B. PREVIOUS CONTRIBUTIONS

It is not clear who first suggested the bistatic-radar approach to

planetary surface studies. To this author's knowledge, the first written

8
comments were in a January 1961 memorandum, by Evans and Pettengill, in

which they discussed the limitations of monostatic radar for surface

studies and means of resolving these difficulties with bistatic-radar

probes. Their suggestion was to transmit with an omni-directional antenna

from a vehicle orbiting the Moon and to receive the scattered energy with

a tunable radiometer. In effect, they would rely upon strong quasi-spec-

ular scattering to isolate a fraction of the disk and resolve the mono-

static scattering law ambiguities.

The second written contribution evidently came from a NASA study

group convened for the purpose of discussing bistatic-radar, with the

result that the potential advantages listed in the introduction were

9
articulated in the group's report, which was authored by Eshleman. What

is important here is that the application of bistatic-radar was realized

to be a versatile and potentially powerful tool for planetary exploration.

Finally, in a work dealing primarily with bistatic probing of plane-

tary atmospheres, Fjeldbo 4 derived the properties of the quasi-specular

scattering from a surface as seen from a space probe, and related the

spectral characteristics of the scattered signal to the parameters of a

surface generated by a stationary Gaussian process.

There have also been several papers and reports on the degradation

of communications systems caused by reflections from planetary surfaces

by extrapolation of monostatic radar results.

In addition to the work above, there were a number of meetings and

I0
conferences , beginning in June 1960, when the general topic of bistatic-

radar for astronomical studies was introduced by V. R. Eshleman. Several

proposals for studies of the use of lunar orbiters and planetary flybys

were initiated at Stanford Univeristy in 1962.

3 SEL-67-042



The first bistatic-radar experiments for the study of the surface

of a celestial body were carried out in October 1966, by the author, in

collaboration with his colleagues at the Center for Radar Astronomy,

ll
Stanford University.

C. DESCRIPTION OF PRESENT WORK

The present work proceeds along the following lines.

Chapter II is a general examination of the scattering properties of

a planet as viewed from a spacecraft. The analytic signal representation

of the scattered wave is introduced, a simple integral representation

of the scattered wave is derived in terms of the analytic signal, and the

radar brightness distribution is defined. The connection between this

formulation and the more common radar cross-section and polar scattering

diagram is given next. Specific features of the scattered fields as

received on board a spacecraft are given last.

Chapter III deals with a method for recovering the radar brightness

distribution from the scattered wave on the basis of a heuristic argument.

The resolution cell, signal-to-noise ratio, and sensitivity to errors are

determined for this method. It is also shown how the method may be made

self-calibrating by use of the illuminating wave as a reference signal.

Chapter IV gives three physical interpretations of the inversion

method. First, it is considered as a synthetic array, performing as an

antenna focused in its own near-field. Second, we give an interpretation

as a tracking filter and explain the resolution properties in terms of

the filter characteristics. Third, we develop an analogy with holograms,

and show how the inversion may be automatically realized with a properly

constructed diffracting screen.

Chapter V develops the inversion as a maximum-likelihood estimator

of the brightness distribution from a specified surface area. The general

form of the estimator is derived. Then after restricting the problem to

low input signal-to-noise ratios, the estimator is applied to the inver-

sion problem. It is shown that the process produces an unbiased minimum

variance estimate of the surface brightness distribution. The relation-

ship between the variance of the estimate of the surface brightness and

the size and shape of our resolution cell is investigated in the last

section.

SEL-67-042 4
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Chapter Vl presents five methods of realizing the estimator. Realiza-

tlon in terms of two tlme-lnvariant filters (one physlcally realizable

and one not physically realizable), a time-varying filter, and an sutocorre-

lator are given. The realization of the optimum filter through the holo-

gram analog is also discussed.

Chapter VII gives some experimental results from the first applica-

tion of bistatic-radar to the surface of a celestial body. An experiment

using Lunar Orbiter spacecraft is described and some samples of the obser-

vations are given. A two-dimensional map, made from observation of a

reflected, continuous-wave signal, is presented.

Chapter VIII gives the conclusions we might reach from the preceding

seven chapters.

The author has made the following contributions to this research:

i. A method for the two-dimensional bistatic-radar mapping of

planetary surfaces using a continuous-wave mode of transmission

between the Earth and a spacecraft.

2. An analysis of that method based upon techniques from conventional

radar and optical imaging theory.

3. Three analog interpretations of the method in terms fBmiliar

devices.

4. The derivation of a specific maximum-likelihood estimator for

the radar brightness of a general scattering area from data

taken on a moving spacecraft. The conditions under which the

original method is optimum and the means by which it should be

modified for other conditions are determined.

5. The first bistatic-radar measurements of the scattering proper-

ties of the Moon, and the preliminary reduction of the data in

terms of the ideas developed above.
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II. PHYSICAL ASSUMPTIONS AND DESCRIPTION OF THE SCATTERED WAVE

A. THE ANALYTIC SIGNAL

The use of complex numbers to describe real physical processes is

a familiar tool of scientists and engineers. Sinusoidal analysis in the

time domain frequently makes use of the relations

cos _t = R_{e j_t)

and (2.1)

sin _t = Im{eJ_t }

to interpret a real oscillation as the projection of a rotating phasor

onto a fixed axis. Similarly, complex Fourier analysis exploits

cos _t =
e.i__t -j _t+ e

and (2.2)

S in _qt =
eJ_t -jnt- e

2j

to decompose real functions into complex integrals over frequency.

While these formulations have great merit, both in a mathematical

sense and in the physical insight they afford, they are somewhat awkward

for dealing with signals when time-frequency dependence is important.

In this report we will be dealing extensively with time changes in

relative phase among a group of signals. Consequently, the analytic signal,

a formalized, time-varylng version of the rotating phasor, is introduced.

This device will allow us to deal explicitly with the relative phases of

signals, and the time variations of phases. The presentation here is

SEL-67-042 6



standard, 12 although in what follows we shall try to emphasize the fea-

tures of this representation which will be of use to us later. A few

elementary results from communication theory will be stated as they apply.

We shall consider a real signal s(t) with Fourier spectrum S(c_),

so that

O0
S(CO) = s(t) e -jOlt dt

CO

and (2.3)

s(t)
OO

i S(CD) e jmt da)
2_ CO

As a direct consequence of s(t) real we have

S(-c0) = S(cu)* (2.4)

where the asterisk is used to denote the complex conjugate. Hence, nothing

is lost if we consider only S(_) for _ _ O, since the function of the

negative argument may always be recovered from its value along the posi-

tive real axis.

The time function generated by transforming the truncated spectrum

obtained by discarding S(_) for m < 0 and doubling the remainder is

the analytic signal

fOCO

1 S(C_) e jc_t ck0 = x(t) + jy(t)z(t) = (2.5)

The function z(t) is not real, but its real part, x(t), is the original

s(t), as may be shown by

*( i fOco e-J ct)t i f_ 0 "
z t) =- S*(C_) dc_ =- S(m) e J°_t d_

_ CO
(2.6)

7 SEL-67-042



+oo
s(t) 1 S(m) e j_°t dm = z(t) + z*(t) = R_[z(t)] (2 7)

- 2_ co 2 "

or s(t) = x(t).
Eq. 2.5 allows us to interpret z(t) as a collection of infinitesimal

phasors, the eJk°tdm, rotating in the same direction, albeit at different

m, with respective amplitudes 8(_). If s(t) is considered as a narrow-

band signal with spectrum S(m) which is non-zero only about some fre-

quency a, this interpretation becomes quite clear. For example, take

f(_) = 0 for Jo3J > W

W<a (2.8)

as a representation of a narrow-band signal. The analytic signal becomes

oo f_coz(t) = _1 fO S(m) e j_°t d_0 : _1 a f(m) eJ(C°+a)t

j_t 1 j " jcot j_lt= e -- f(c0) e de0 = Z(t) e

JwI_ -

(2.9)

As before,

s(t) = R_[z(t)] = R_{Z(t) e jgt)
(2.10)

Writing Z(t) = X(t) + j Y(t), we have

s(t) = x(t) cos - Y(t) sin (2.11)

The X(t) and Y(t) are referred to as the in-phase and quadrature com-

ponents of s(t). The complex envelope of s(t) is Z(t). It should be

noted that _ has been specified in only the most general terms, and that

the form of these results is not critically dependent on the value of _,

even though the exact Z(t) obtained may be. In addition, Z(t), and

SEL-67-042 8



x(t)

change significantly only in a time greater than

In terms of Eq. 2.5 we have separated z(t)

or carrier of constant frequency and amplitude,

modulating function Z(t) of amplitude

and Y(t) likewise, saw relatively slowly varying functions that

1/w.

into a reference phesor

e jat, and a complex

M(t) = {x2(t) + y2(t)}_

and angle

From now on the term phase will refer specifically to a function _(t);

amplitude will refer to M(t). In particular if M(t) is constant, so

that we have a purely phase-modulated wave, we picture the signal as a

phasor spinning in the complex plane with the nominal angular position

(phase) at and gaining or losing by the quantity _(t). The represen-

tation of cos(at - _(t)) is simply ej(at - _(t)) This concept win
be important to us later.

A distinct virtue of this formulation is the ease with which X(t)

and Y(t) may be obtained by measurement. If we multiply s(t) by
cos at the result is

1 X(t) + I X(t) cos 2at 1 Y(t) sin 2ats(t) cos at = _ _ - (2.13)

Removing the 2at terms by filtering and doubling the resultant gives

X(t). A similar procedure employing sin at yields Y(t). A block dia-

gram for this operation is given in Fig. 1. The cutoff frequency for the

filter, _c' need only be low enough to avoid the twice-frequency terms

in Eq. 2.13, and high enough to pass all of X(t) and Y(t). Generally,

it is advantageous to use the lowest possible value consistent with the

modulation bandwidth.

9 SEL-67-042



s(t)

T
2[co, n tl
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FIG. i. METHOD FOR OBTAINING COMPLEX ENVELOPE.

We may also relate z(t) to the energy E in the signal. From

Parseval's theorem

E =-- s_ 2 _= s (t) dt

2 _ -03 _03

(2.14)

and

_-+_ 12 _003
Is(_) _ = 2 Is(_)L2

03

for S(-_) = S_(_) (2.15)

and since x(t) = s(t) we have

_x 2 /__y2 i f___E = (t) dt = (t) dt = _ Iz(t)l 2 dt (2.16)

If we now consider filters with real impulse response h(T), and

transfer functions H(_), it follows that we may define a complex im-

pulse response

g(T) = i H(_) e j_T d_
(2.17)

SEL-67-042 I0
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As before, we have generated the complex representations by discarding

the spectrum for _ < 0 and doubling the resultant. By restricting the

problems to narrow-band filters about _, we again have

g(T) = G(T) e j_T (2.18)

with G(t) the complex envelope function of the filter response in a

manner completely analogous to z(t) and Z(t). Still with the narrow-

band restriction and letting si(t ) and So(t ) be the input and output

signals respectively of h(t),

Ls0(t ) = h(T) si(t-T ) dT (2.19)

It is a simple matter to show that

Z0(t ) e j_t /+_= G(T) zi(t-T) aT
--cO

(2.20)

where Z0(t ) is the complex envelope of the analytic response function

of the filter. Thus, the complex envelope of the response of a narrow-

band filter to a narrow-band signal may be calculated directly from the

complex envelopes of the input signal and the impulse response function

of the filter. It is also possible to apply the complex description of

signals to band-limited noise waveforms. We define N(t) as the complex

envelope of a narrow-band noise waveform n(t). Thus

n(t) = R_{N(t) e j_t]

as before and

N(t) = Xn(t ) + j Yn(t) (2.21)

ii SEL-67-042



defined the in-phase and quadrature components of the noise. Clearly,

these two components of the noise may be obtained by sine and cosine

multiplication of n(t), followed by filtering, exactly as before.

Letting @(co) represent the power spectrum associated with n(t),

the autocorrelstion function of the process is

_(T)- 2_i __ @(CO)eJCOT dco (2.22)

The corresponding analytic function c(t) is given in this case by

--1 @(co) eJ°_T dco = c(T) e j'QTc(T)= (2.23)

13
A well-known result of this is that for stationary narrow-band processes

<Xn(t 1) Xn(t 2)_ = <Yn(tl) Yn(t2 )>= R_(C(tl-t2))

<Yn(tl ) Xn(t2)> = <Xn(t I) Yn(t2)) = Im[C(tl-t2))

(2.24)

C(tl-t2) is the complex envelope of C(T). We shall make use of two

consequences of this result:

I. If the noise is a Gaussian process, the X (t) and Y (t)
n n

are also Gaussian since they are the results of linear operations

on Gaussian random variables.

2. Since @(co) must be real, C(T) must be of the form

jr0 T

C(T) = [E(T) + j 0(T)) e c (2.25)

where E(T) and 0(T) represent even and odd functions respectively.

If, in addition, @(co't_) is even about the _' origin (perhaps

requiring a suitable choice of _), then in addition 0(T) = O.

C(T) = E(T) + j(0) and thus, Xn(t ) and Yn(t) are statistically

independent from Eqs. 2.24.

SEL-67-042 12



B. THE SCATTERING PROCESS

If we now consider the fields in a common reference frame originating

from an oscillator st frequency _, the Maxwell equations in homogeneous

media are

v x _ = -j_

vx_= j_c_ + _

V'H=0

v • _ = p/_

(2.26)

j2tWe have used our complex representation to write vectors as _ e

Any divergenceless vector is the curl of some other vector, so

q

H = V x A (2.27)

Substituting the above into Eqs. 2.26, we have

vx (_+ jr_) = o (2.28)

m

where A is the magnetic vector potential.

Now, invoking the complementary relationship that a curl-free vector

is the gradient of some scalar gives

or

(2.29)

The function _ is the electric scalar potential.

Choosing V • _ = -j_E_, so that A corresponds to a Lorentz

gauge,
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- - 1 v(v. _)E = -j_A +T_
and (2.30)

a=VXA"

We shall use the expression for _ in terms of the volume current

distribution _(;).

P, f "J([") e-Jklr-r'l_(7-) = dr' (2.31)

4ff .I v , 1r ["I

-- n

Here, r and r' are position vectors used to denote field points and

source points, respectively, and to emphasize that the _, to be evalu-

ated at r, results from J(r') integrated over V' As usual k is

the magnitude of the wave vector

2_k = Ikl - X

A general illustration is given in Fig. 2.

,_ A(_')

/
FIG. 2. GEOMETRY FOR EQ. 2.31.
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Reintroducing the eJ_ts

_(r) e j_t = e j_t _ f

4_ I V f

d_' (2.32)

we see that _(r) is the complex envelope associated with out representa-

tion of the magnetic vector potential• Although at the moment _ is

a constant in time, it will not remain so. The electric field will be

determined from Eq. 2.30 by substituting the representation of 2.31

for the vector potential.

Calculating V- • _(_)
r

e-Jk I _"-r f If _(r,)v _(r) _- v- I• = • dr' (2.33)

r 4_ r Jr, Irr'l

- -jk[r_'1

'_V ---- e

= _ J'(r' ) • Urr ,

4_ , jr_r,I
dr'

- -jkLr-r'L

_(r' ) • u-- e
- _ rr'

4_ , ir_r,12
dv ' (2.34)

_ m

- r-r '
U----! -- "_

rr Ir-r'l

By restricting ourselves to r far removed from V', the second term

may be neglected with respect to the first. Taking _(V_ • _) gives

_ _ -jklr-r' 1

k_ [ (_(_')"u;;,)u;;,e
V-(V- • A) _ dv'

r r 4_ _v' Ir ;'[

- )_r_-e-Jkt_'-;'l

(5(;'1.u ,+ jk 4_XX rr dr' (2.35)
' I_ _'l 2
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Dropping the term in 1/Ir-r'l 2

E(r) = -j _ f "_(r') e -jklr-r'l__

-'_' Ir-r'l

again and substituting in Eq. 2.30

-- -- r-r

Ur r ,
dr' + j _ (_(r') )Urr,e-Jkl

' I_-7'l

-- m

(_(r') _-- -- - J(r') e -jk [r-r'l

rr' )Urr'= -j _ dr' (2.36)
_' 17-;'l

The bracketed terms in the integral are the components of _(7') normal

to the direction of propagation. This will be denoted by

Y (7,) = (Y(r') --- ) --- - 7(7') (2.37)
n Urr' Urr'

m

By ignoring the higher order terms in the demoninator and assuming r

far removed from the volume V' we have restricted ourselves to the

radiation fields. Except when explicitly noted this will be the case

from now on.

Equation 2.36 illustrates an important property of electromagnetic

radiation; i.e., except for a constant, the radiated fields in any direc-

tion may be considered as a linear superposition of the currents that

produced them, retarded in phase by klr-7'l, and attenuated by 1/Ir-r' I .

In particular, E(r) results from the convolution of a point radiation

source e-Jkl_l/l_l' ' and the function _ (r') Furthermore, the only
' --, , n "

physically restrictive assumption about the nature of _ (r') is thatn

it exists in electrically homogeneous and unbound media.

These results apply almost automatically to the radiation from plane-

tary surfaces. The volume over which our currents exist becomes a thin

region containing the part of the planet in which we are interested,

while the currents themselves tend to sheets. For the surface of a planet

we might have a situation similar to that given in Fig. 3. Thus we write

A(r) = -_- fs K(r') e -jkl_-7'l ds' (2.38)
4_ , I;-;' L
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FIG. 3. GEOMETRY FOR EQ. 2.38.

when S' = the surface of integration and K(r') = current sheet on s:

We do this with the understanding that K(r') may in fact have depth,

and that if it does, we must take it into account by reverting to inte-

grals over volumes.

In more complicated situations, where the fields can no longer be

considered monochromatic, it is possible to extend the formulation that

we have outlined directly via the Fourier transform. 14'15 However, that

will not be necessary here.

To use these relations in the problem at hand, we sdopt the view

that the currents in our integrals are the result of incident radiation

from a distant source impinging upon our surface. The reradiated, or

scattered waves, are then given by Eqs. 2.37, 2.38. Unfortunately, the

relationship between these currents and the source fields producing them

is one of the most difficult problems in electromagnetic theory, and one

in which little progress has been made. Fortunately for us, however,

the form of the scattered wave given is sufficient for our work. The

important property of the scattering, and the one that is critical to

the later developments in this study, is that no matter what the surface

is like, or how the surface currents are generated, the radiation fields

can always be considered as arising from a continuous distribution of

point sources.

C. THE POLAR SCATTERING DIAGRAM AND BRIGHTNESS DISTRIBUTION

Most radar measurements ultimately consist of a determination of

the power scattered into the receiver by the target for some particular
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set of antenna and receiver parameters. The quantities of interest might

be the signal level present on an absolute scale, the ratio of the trans-

mitted-to-received signal, or both the absolute and relative values. Con-

sequently, it is necessary to have a parameter that describes the target

in terms of a power measurement by the radar. Such a parameter obviously

serves two purposes. The first of these is to provide a standard for

comparing different radar systems. The second, which is particularly

applicable to radar as a scientific probe, is to characterize the target

itself. The quantity apropos this usage is the target radar cross-section,

which is defined as the capture area required to intercept exactly that

amount of power from the transmitter, so that if it were to be isotropi-

cally reradiated, it would scatter the same power into the receiver as

does the actual target. Using this definition, the radar equation is

commonly written as

PTGT _°- .

PR = _ " 4_R 2 AR
4 _R 1 2

(2.39)

where PT and PR are the transmitted and received powers; R 1 and R 2

are the ranges from the transmitter to the target and the target to the

receiver, respectively; A R is the effective area of the receiving an-

tenna viewed from the target while G T is the gain of the transmitting

antenna in the target direction; ff is the radar cross-section that we

have just defined. A sketch showing these quantities is given in

Fig. 4.

When the target is very large compared with the other dimensions

involved as in Fig. 5, the usage must be modified slightly. Since in

this case it is usually possible to distinguish one part of the target

surface from another, a differential radar cross-section is introduced.

Thus, we have

o 2xO- (2.40)
- As
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FIG. 4. ILLUSTRATING THE RADAR EQUATION.

o
where ¢ is the number of square meters of radar cross-section per

unit area of target surface. The radar equation becomes

o

PTGTAR _

ZiPR = , ,2 2R2 " As
t4g) R 1 2

(2.41)

FIG. 5. RADAR CLOSE TO A SURFACE.

The term _PR is the power scattered by the differential element As.
o

has immediate expression as a ratio of the scattered and incident

fields introduced in the previous section:
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o IEs12 4_R2
- 2 2_S (2.42)

IEiL

It is clear from even the most cursory examination of Eqs. 2.37 and

o
2.38 that ff is, in general, a function of both the direction of inci-

dence and the direction of reflection. Introducing the polar angles of

Fig. 6, e i, e r, ep as the angle of incidence, the angle of reflection,

and the angle between the planes of incidence and the plane of reflection,

respectively, allows explicit notation

o o

cr = _ (e r, ep; ei) (2.43)

The surface itself is assumed homogeneous in its scattering properties,

o
so that _ is independent of rotation about the normal from which e i

and e are measured.
r

FIG. 6. SCATTERING GEOMETRY.

The polar scattering diagram

cross-section

,(e r, ep; ei)
is the normalized radar

_(e r, ep; e i) -

o ; ei )(er, ep

fO 2_ r _/2 off (er, ep; ei) sin er der d@p
_0

(2.44)
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shown in a manner completely analogous to the directivity of an antenna.

Letting the total reflectlvity be

 (ei ) : o¢ (er, ep; ei) sin er de de
_0 r p

(2.45)

we write

o

= p(e i) _(e r, ep; e i) (2.46)

ct.

Thus, a determination of _-(e r, 8p; e i) is equivalent to a determina-

tion of the polar scattering diagram and a reflectivity factor P(ei).

While radar cross-section and the polar scattering diagram are

extremely useful for describing the scattering from a single target or

from an element of surface, they become awkward to use when expanded to

include surfaces that exhibit considerable variation in their scattering

properties from one point to another.

To escape these difficulties, we adopt another point of view. If

we suppose for the moment that the surface is examined from some fixed

vantage point, so that our angles of incidence and reflection are fixed

for each portion of the surface, then we may introduce a brightness

function B(_), which depends only upon surface location. Using the

brightnessl6 ostandard definitions of total and _ as the differential

radar cross-section at r for our particular angles of incidence and

reflection, we have

PTGT _°(r; 8 r, 8p, 8 i) (2.47)
B(r; e r, ep, e.)- 2 4_

4_RI

Assuming that the incident power per unit area of incoming wave is

lw/m 2 gives

PRGT
- 1
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and

°(r" e r, ep (2.48)
, , ei )

B(r; Or , Op, Oi) = 4_

Thus, in effect, we have three names for the same thing. The brightness

distribution B(r), which we use when describing the power arriving

from various portions of our surface; the polar scattering diagram _,

which we use when describing the angular dependence of the scatter of

o
an elementary surface element; and the radar cross-section ff , which

we use for convenience in the radar equation. Each of these has hidden

in it the parameters and dependencies displayed by the other.

The albedo of a surface is the total brightness when integrated

over the hemisphere above the surface for a given angle of incidence.

From Eqs. 2.48 and Eq. 2.45, this is related to the reflectivity by

Assuming K(_) is the result of El, the brightness may be easily

related to the current distribution on the surface. Differentiating

Eq. 2.38 with respect to s' we find

m

AE : _-_Kn(r') e -jklr-r'[

so that

- (4_)2 Ir-r'l 2

and

B(r') l (r')l 2

(2.49)

(2.50)

(2.51)
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The brightness distribution is proportional to the magnitude squared of

the current distribution on the surface.

D. THE SCATTERED SIGNAL RECEIVED ON BOARD A SPACECRAFT

The developments of the preceding sections can now be used to de-

rive some rather general properties of the radiation scattered by a

planet. Having done so, it will be possible to predict the character-

istics of the signals which will be seen by a bistatic-radar operating

between the Earth and a spacecraft near the planet.

There are obviously two ways in which such a radar could operate.

Either the transmitter remains on the ground while the receiver is

carried into space, or the transmitter must become spsceborne while the

receiver is left behind. Each of these two possibilities has its own

advantages and disadvantages in practical terms. From a theoretical

viewpoint, however, the reciprocity theorem assures us that they are

equivalent, since the fields present at the receiver terminals must be

the same in either case, all else being equal. But there are conceptual

benefits to be gained from considering the first, or up-link, case where

it is the receiver that is carried by the spacecraft; therefore, this is

the case we will analyze.

FIG. 7. GEOMETRY FOR SCATTERING

FROM PLANET.

Consider the situation depicted in Fig. 7.

dinste system shown is at the center of the planet. In this system,

rE' r' and r are position vectors of the Earth, a point of the sur-

face of the planet, and the spacecraft, respectively. The planet is

illuminated with radiation from the Earth of the form
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E. = E
1 o

e j (_t-ki "rE ) (2.52)

As usual _. is the incident wave vector in the direction of propaga-
z

tion. The Earth is assumed to be so remote that the magnitude of
0

is constant near the origin of our coordinate system. The resulting

scattered wave is denoted E which, with the representation of Eq. 2.38,
S

may be written as

es Es ej_t eJ_t_
4x t

P

K(r') e-Jklr-r'Ids

ir-r'i
(2.53)

need only concern ourselves with Es' the complex envelopeAs before, we

of the analytic signal representation e . The area of integration s'
s P

is the surface included within the spacecraft horizon on the planet.

The e j_t comes directly from the assumption that the current and the

scattered fields are caused by the e i. The field distribution Es is

pictured as a fixed pattern attached to the planet in much the same way

that an antenna pattern is associated with a physical antenna.

The spacecraft antenna pattern is taken into account by introducing

an auxiliary coordinate system, parallel to the original and centered

on the spacecraft as in Fig. 8. In the auxiliary system, let gv(U)

denote the voltage gain pattern of the spacecraft antenna for a wave

arriving from the u direction. Modifying the integral by weighting

FIG. 8. ANTENNA VOLTAGE GAIN.
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each contribution to the field by the antenna gain in the direction from

which it arrives, the voltage at the antenna terminals except for a con-

stant is

_sf K(r') e -jklr-r']: I
P

gr(Urr,) ds (2.54)

Fjeldbo 4 has used an expansion similar to the method of stationary

phase to analyze the case of scattering from a planet whose surface is

generated by a zero mean, Gaussian random process superimposed upon a

spherical surface. Starting from the Huygens-Khirchoff approximation

and expanding about the point of specular reflection for the mean surface,

Fjeldbo concluded that the average radar cross-section of a gently un-

dulating planet is equal to that of a smooth sphere of equal size, and

that the principal portion of the energy is returned from a region about

the instantaneous specular point. The size of this region is determined

by the probability, as one moves away from the specular point on the sur-

face, of a plane tangent to the local surface being properly oriented to

produce a reflection toward the spacecraft. In effect, his method selects

the portions of the surface that tend to produce mirror-like reflections,

in that the phases of the current distribution on these surfaces undergo

a linear variation with _'. Such surfaces are frequently thought of as

plane facets or as gently curved surfaces which vary smoothly on the

scale of a local Fresnel zone. Numerous other authors, while not applying

their results to a spherical geometry for planets, have come to similar

conclusions.

Contributions to the integral from regions where the phase is not

stationary are not so easily handled. It is generally supposed that

these regions correspond to portions of the surface that are extremely

rough, or inhomogeneous, or vary in some other way that, on the scale of

a wavelength, causes large phase fluctuations in our integral Eq. 2.53.

The reradiation associated with these rapid phase fluctuations of the

current sheet is called the diffuse component.
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Generally, the fraction of the field generated by the d_fuse com-

ponent is much smaller than that from the quasi-specular. However, since

the fields associated with these two mechanisms originate on different
m

parts of the planet, they have different u-- and thus may be enhanced
rr' '

by a suitable choice of antenna function gv" If the incident wave

changes relative to the surface, as it must do when the planet rotates,

a new pattern is generated. However, until the rotation is great enough

to cause significant variations in the magnitude of the current distrib-

utions, the effect is to modify the phases of the current distribution

by the change in the phase path of the illuminating wave. This may be

displayed in our integral by factoring out the phase retardation of the

incoming wave.

-jk " r'-jk[ r-r' 1

_ fs _'(_')e i
= m ds

s 4g , 1;_;, [
I- - 1P

+jk. "r'
1

K,(_')=_(_,) e

(2.55)

Thus far, e has been treated as a point function observed at r.
s

But recognizing that a spacecraft must be in motion and that planets

-- u

rotate, the two position vectors r f and r must now be considered as

functions of time. Writing this out:

ujkL ;(t) -[;, (t)] I-j_ i. Jr' (t)]

s(r(t)) = j/-4_: fs K'([r'(t)]) e
Ir'(t)- [r'(t)] 1

P

ds

(2.56)

where [r(t)] is the retarded quantity

from any point on the surface is

;, (,_ ll).c
The phase

_(t) =-_i-[;'(t)]- k_-- (t) • (;(t)- [_'(t)])rr !
(2.57)
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The unit vector u}_,, must now be defined in terms of r, and the

retarded r'. Frequency is the time derivative of phase. So

d - " 1)_(t) ; _ _(t) ; • [7' ] - k;_., - (9..58)

This is simply the expression for the Doppler shift associated with the

relative motion of the points r and r'. The total scattered signal

is the composite of many small signals of different frequencies. It is

clear from Eq. 2.58 that Es(t) is band-limited, since all the terms on

the right are finite. Furthermore, it is also easy to show that E (r(t))
s

represents a narrow-band signal for all spacecraft velocities much less

than the speed of light. Thus, we see that the effect of spacecraft mo-

tion is to map points on the planet into the instantaneous frequency do-

main by the scalar product of the velocity vector and the wave vector.

This mapping is not necessarily one-to-one, since several points may share

the same instantaneous Doppler frequency. However, it should be clear

that points close together on the surface must remain close in frequency.

Bright spots on the surface will show up a strong component of the fre-

quency spectrum of the scattered signal.

It is also convenient to be able to describe the variation of the

scattered fields without reference to time. For this we use path length

along the trajectory as a coordinate with the vector relations

t

s(t) = _t "_'(t) dt

o

(2.59)

and

dG
_(t)= _(t)= _7

Distance measured along the path will be called

frequency in the direction u as

_. We define the spatial

A

- V ¢0 • u (2.60)
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This is easily related to the Doppler frequency by i_l

(2.61)

For a spacecraft less than a few planetary radii from the surface, the

velocity of the vehicle is a great deal higher than that of a point on
the surface,

so that the Doppler shift is dominated by the spacecraft velocity

cu - k-- • u-
rr' v

where

With this approximation, the spatial frequency is just the projection of

the wave vector k--T onto the spacecraft trajectory.
rr

The same considerations apply to the incident wave at the spacecraft

"- • r
-Jk i

E i = E 0 e (2.62)

6D ---- ° V
1

= _. ' u- (2.63)
1 v

The signal present at the spacecraft is the narrow-band composite

of the scattered signals from the entire surface visible from r, with

each component shifted in frequency by its direction of arrival and

weighted in amplitude by the root modulus brightness of the surface and

the antenna gain toward it. Viewed from the spacecraft, the brightest

region will be the portion of the planet around the specular reflection.
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In addition, the incident wave is also present at the spacecraft with

the standard Doppler shift.

It should also be noted that beamwidth, as applied to an antenna,

and bandwidth, as applied to a filter in the frequency domain, are virtually

synonymous in this case. The only restriction is that we think of beam-

width in a plane containing the velocity vector. Since the antenna gain,
m

gv(_), is a function of u alone, and the Doppler frequency for an arbi-
m

trary direction is essentially a function of the same vector variable u,

as k(_ _), it is impossible to have frequencies present from targets

outside the beam. Conversely, if' the input to the spacecraft receiver is

preceded by a narrow-band filter, it is impossible to have signals present

from directions such that _ lies outside of the receiver passband.

29 SEL-67-042



III. INVERSION OF DISCRETE SCATTERERS

A. HEURISTIC DEVELOPMENT

In the preceding chapter, we considered the total signal scattered

from a planet and related this signal to the current distribution on the

surface. We also found that the magnitude squared of the currents is

directly related to surface brightness in both an intuitive and rigorous

sense. Our purpose now is to seek methods of recovering the brightness

distribution from a measurement of the scattered fields.

To begin, it is instructive to adopt the standard radar problem

approach and to consider the radiation from a single point on the planet's

surface and the means by which this point might be distinguished from all

others. This is accomplished by substituting a point source for K(;')

in Eq. 2.38 of the preceding chapter. Since each component of the elec-

tromagnetic fields propagates in exactly the same way, the vector nota-

tion for the scattered wave will be dropped. The following equations

will thus apply to each component of the fields individually and, if

necessary, the vector fields can always be reconstructed.

Using two-dimensional Dirsc delta function of strength a

K(r') = a 5(r' - p) (3.1)

-J{%"5 - J_Sr (r-5)
E = a e (3.2)

s Ir-;L

or using the notation of Chapter II

: -_.. _ - _-- - (r-_)
x pr

a e jq)
E -

s I;41

(3.3)

(3.4)
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D

The geometry is the s_ ae thm_ _ given in Fig. 7, with r' replaced by

P. As a function of time, t, or of the spatial variable s along the

path, this fits nea:_ly into a line in cylindrical coordinates, such as

the one illustrated in Fig. 9.

|,|

/

I*"' S

__ Xlt)

FIG. 9. COMPLEX ENVELOPE OF

SIGNAL FROM POINT TARGET.

Here, we have depicted the trajectory of the complex envelope signal,

as the spacecraft approached and moved past our target. Frequency devia-

tion from the carrier is given by the tightness of the winding with the

sign of frequency deviation determined by its sense, i.e., right or left.

Amplitude is indicated by the diameter of the coil. There is an initial

increase in phase due to the shortening of the path as the spacecraft

approaches, followed by a stationary point at the moment of closest ap-

proach, and finally by an unwinding of the coil as the spacecraft recedes.

Suppose that we consider another point p', which is different from

P. Then, as before, we have

K(r')--.'5(;'-5') (3.5)

and

E' - S' e jq)' (3.6)

s I
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This second primed signal is similar in every respect to the first, and

Fig. 9 represents E' as well as it does E . However, the difference
s s

in their phase functions, _ and _' provides an important distinctiont "

If, for example, the spacecraft passes the unprimed target before the

primed, then the signal from the first is rapidly unwinding at the sta-

tionary point of the second. If the spacecraft passes both targets at

the same instant so that the stationary points occur together, then either

the targets are st the same distance from the spacecraft or they are not.

If they are not at the same distance, then the signals must wind and un-

wind at different rates since (_ - _) _ (_ - p') for any point other

than the stationary point. Furthermore, these characteristics of the

phases are independent of the amplitudes

A method for separating these two signals, i.e., recovering the
D

amplitudes of the currents at p and p' suggests itself Through

the linearity of the scattering process, the composite signal from p

and p' is the sum of the contribution from each.

a' e j_'
E - a e j_ + (3.7)

Ir- l

Therefore, if we can unwind E by the amount corresponding to the

phase of either E or E', the result will be a complex constant plus
s s

a term that fluctuates with the difference in phase of the primed and

unprimed signals. Mathematically, this corresponds to multiplication by

e -j_ or e -j_' with the result that

-j_/

e -j_ E - a + .a' e (3.8)

I;- l Lr- 'L

or

a e j_V a'
e-J_° 'E _ + (3.9)
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where

(3.10)

Integration over many fluctuations of e±j.4_

unwanted terms to a small fraction of the total.

Eq. 3.8 we would expect

should then reduce the

For example, from

f sl _s sl dEe"jq) Ed_ = a _ _

So 0 [r-Pl
._ssl e -j_/

--+ a' d_

o It- 'I

- a

(Sl-S O)

Ir-Pi
+ small terms if [r-p[

variations are slight,

(3.11)

The corresponding block diagram is given below in Fig. I0.

p(s)

FIG. i0. DIAGRAM FOR PROCESSING SIGNAL FROM

TARGET AT p,

From this, we may immediately generalize that for a set of discrete

scatters
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and

(3.12)

_ik = cPi - q°k
(3.13)

To recover

Sl e -jqDra Ed_ = a +

SO m So Ir_Pm i i_m 0

(Sl-So) E (small terms)= am +

Ir4ml
(3.14)

These operations are possible because of our assumed knowledge of the

spacecraft trajectory.

A block diagram for these operations is given below in Fig. 11.

E(t)

F'n _-_ I_nl

@

FIG. Ii. PARALLEL PROCESSOR FOR

MANY POINTS.

It should always be borne in mind that E represents data, a mea-

surement of the scattered wave, over some portion of the spacecraft

trajectory.
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B. THE RESOLUTION CELL

The ultimate usefulness of an image lies in the finest detail that

it preserves, or, in turn, upon the minimum distance that can exist be-

tween two points and still allow them to be distinguished from one another.

The classical optical function used for this purpose is the spatial dis-

tribution in the image space of the field intensity corresponding to an

optical point source, or the image point response.

A similar approach is applied to the monostatic radar problem, in

that it is the radar system's power response to a point target that is

taken as a measure of the system's capability to resolve closely spaced

targets. Instead of an optical system with an image plane, we now have

a receiver processing the returning signals in time-frequency space to

determine target range and velocity. The resolution that may be obtained

is directly related to the waveform used, and is characterized by the

ambiguity function. Unfortunately, the ambiguity function does not apply

here for two reasons: (i) we are interested in a resolution cell on the

surface of our planet rather than in time-frequency, and (2) the signal

arriving from each of our scatterers is a different function rather than

a standard signal with a continuum of time-frequency displacements, as

required by the assumptions in the development of the ambiguity function.

However, the physical basis for calculating the point response is the

same for both the radar and optical problems. That basis is the assump-

tion that the absolute phases of all parts of the target are statistically

independent, so that on the average, it is the powers, or intensities, of

the responses from each target point that will be superimposed in the

image. This same assumption will be made here, but a hybrid approach is

taken to the calculation. The signal is considered as processed in a

manner similar to that described in Section A above. But, for purposes

of analysis, it is associated with the geometry that existed when the

signal was received. With this approach, our problem becomes somewhat

geometrical.

The points p and p' and a fraction of the spacecraft's trajectory

are shown in Fig. 12. For the purpose of this computation, the trajectory

is assumed to be linear.
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I

I

S O St

FIG. 12. RELATION OF p AND

pW.

A coordinate system is centered on the point p as shown. For

convenience p, p' and the trajectory are also assumed to be co-planar.

The functions r and r' are the distances to p and p' from the

point s respectively, while R is the distance of closest approach.

Any results obtained from the co-planar assumption may be applied

to the planetary case by rotating points on the sphere about the trajec-

tory until they lie in a common plane.

analytic signal on s is

Using our new variables, the

E(s) - a ej_ + a' e j_'
r r' (3.15)

= -kr

_' = -kr'

(3.16)

Applying the operations of Fig. i0, and taking the magnitude squared to

obtain power

2 = a + a t

2

f sle-jvsor--- 7- ds//fSl _ISo --

(3.17)
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Expanding Eq, 3.17

lal2= lal2
0 /So

+ 2R_ a ' r' d

0 /-So

(3.18)

The last term is taken equal to zero by the independent phases argument.

Thus, we are left with

A

lal2 lal2 2-- ÷la'l
f sl e -j_ s/f_ sl [2

r_ d

s O /-s O

(3.19)

where the integral factor describes the effects of the target at p' on

our evaluation of the brightness at p. This factor is also precisely

the image point response, since it is the expression one would obtain

for the response at p', due to a source at p. Therefore, we are led

to a calculation of

_Sl e-J*/fSl dsg(_'_)= -- T
s o r'/Js 0

(3.20)

Starting with the exponent

= -k(r-r')

r = (R 2 + s 2)

(3.21)

= R + s<< 1
R

(3.22)
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l+ Is- )2]= (R-n) 2(R__ )2j
(3.23)

the difference between these two terms is

r-r ! _

2 2

2R + _

2 2R_(R-_)2R_s - s _ + R_ 2 +

= 2R(R-_)

(3.24)

When applied to the integral, the last two terms in Eq. 3.24 will give

only a constant phase factor and may be dropped leaving

2
-s _ + 2Rs_ (3.25)

r-r' - 2R(R-q)

as the important part of the path difference. Completing the square in

Eq. 3.24 yields

, 2
(n s -

q
, r_ _ 0 (3.26)

and dropping the constant term again and substituting

ther reduces the exponent expression to

2

2_/_ for k fur-

(3.27)

Under the assumptions required for the binomial expansion approxi-

mation in the exponent, the variation in the denominator of the upper

integral is also small and approximately equal to R. The lower integral

may be evaluated in terms of the inverse tangent.
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_(_,_)= ' I, f sl
sI

R tan -I s/R [ So
I
so

2

-J R_ (_s - _'_/_R)
e

dB

(3.28)

letting

(zz(s) = R(R-_]) (_s - TI-_R) (3.29)

yields

g(_,_)=
1

R tan -1 s/R I sl
!

s O

-j __ z 2
2

e dz (3.30)

If we now express

then

tan -I
s/RIsl[ as approximately equal, to s1

R
s2 - So,

g(_,_) \ 2_ /
= (Sl_So)

f-(Sl (o )2 _ 2

z()--'so" os _ z + j sin _ z dz

(3.31)

Thus

2_3 (Sl-So)2
Z(Sl iI ¸
z(s 0

"(So)/J

(3.32)
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where

_0 z n 2S(z) = sin 7 z
dz

and

f0 z _ z 2C (z) = cos _ dz

are the Fresnel integrals for sine and cosine respectively.

The expressions may be evaluated on the _ axis by returning to

Eq. 3.25: substituting

q = 0 , r-r' = _ s/R (3.33)

SO

2_ s/Rg(_,O) - 1 1 -J -_-e ds (3.34)

Sl-So s o

Equation 3.34 may be interpreted as the Fourier transform of a single

pulse starting from s O and lasting until s 1 so

g(_,O) = sinc(_/h • Sl_ O) (3.35)

Sl_So)I(_,O) =sinc 2 _/h • R

A contour plot of I(_,q) for R = 106 , s 1 = s O = 105,

in Fig. 13.

(3.36)

is given
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"_/X(WAVELENGTHS)f - .2

_ 50_ I00_ 150 200 ,_lX

FIG. 13. ISOPHOTES OF POINT RESPONSE.

It is also useful to consider the on-axis resolution. For the

_-axis, again substitute in Eq. 3.25, _ = 0

2 2

s _ T _ s--A if R >> q
r-r' - 2R(R-q) 2R 2

(3.37)

and

2
_s__R

sI -j _ R2i e ds

g(o,_) - Sl-So So

(3.38)

letting z = s/R

f _ z22_/)_Sl/R -J _ (3.39)
g(O.,_) = R e dz

(Sl-S O) JSo/S

Taking the special case s I = -s o and Sl/R = f/2 provides con-

siderable simplification
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_2_
2 ff/2 -J 7 z x= e

g(o,n) 7 _o
dz (3.40)

Using the Fresnel integral again yields

f2

It is a simple matter to show that this is well behaved st the origin

and that I(0,O) = 1. The _-axis resolution may also be expressed in

terms of the quantity f by substitution in Eq." 3.36:

I(_,O) = sinc2(f_/h) (3.42)

With these expressions, it is possible to evaluate the resolution

in the _ and q directions. A natural choice in the _ direction

is the distance between the first zeros of the sinc function. Thus:

(_/_) f = 1

or

1 (3.43)A_/_ = 7

The choice is not quite so clear in the q direction since I(O,q)

has no zeros, and we take the value I(O,_) = O.1 _ 1/_ 2 arbitrarily.

Then using the asymptotic value of the Fresnel integrals

C(z)-*1/2}s(.)* 1/2
as Z -_ oo

gives

I(0,q) 1 2 h [(1) 2 (1) 2 ] _ 1- 2 - f2 A_ + - " --f2A_ 2
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or

2

A_/_ _ _ (3.44)
2f 2

Doubling the result to account for both the _ and -q directions,

2

- (3.45)h 2
f

The resolution in the two dimensions _ and _ has been plotted in

Fig. 14 from Eq. 3.43 and Eq. 3.44.

WITH RESPECT TO 17

I
-I I

oIITH RES

I I
IO"= to"l I

f- PATH/ RANGE
I0

FIG. 14.

NUMBER.

RESOLUTION VS f

Obviously, the key to resolution in the _ direction is to make

f as large as possible. Note that so long as our approximations are

satisfied, the results are independent of range.

A critical factor in the validity of the point response function

I(_,_) as an estimate of the resolution is its behavior for large

and _. If I(_,_) does not fall off rapidly enough, then it is possible
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for a collection of targets far removed from the origin of the _,q

coordinate system to contribute a significant fraction of the total power

when the data are processed to recover the signal from a particular p.

The importance of this effect may be estimated by imagining that the con-

tributing scatterers are uniformly distributed on the target surface,

and by calculating the fraction of the total response that comes from a

small area about the target point. Making the change of variables

= P cos e

= p sin 8

(3.46)

the pertinent quantity becomes

_oPO_02_I (p, e) pdpde

A(%) = (3.47)

#I _ I(p,e)pdpde

It does not seem possible to evaluate the integral from the expression

for I(p,8) which we already have, so we revert to the geometrical repre-

sentation and begin again.

$O,aO

SEL-67-042
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From Fig. 15, the Ph_Be difference is
i

p cos(0-a) (3.48)

and the pertinent integral is

ifl _j_g(P,@) = _" e

so

ds = e -j_/ dO_, a - _s
R

. 1 e_j(_,(c_) _ ,(a'))
Z(_,e) = g. g = O 0

da da' (3.49)

The integral over p_ @ is

_oPO _02_i = . 2_ C_l ._i
(P'e) pdpde /oPO _0 ,f_O 0

pe-J(@'((::z) -"_'(0_' ))d(:ZdCZ'dpd@

(3.50)

Now

2. _[oo,(e_) - oo_(e..._')],(o_) - ,(c_, ) = (3.51)

while

jz cos e
e

00

k (z) cos(2 k 8)= Jo(Z) + 2 (-) J2k

k=l

X k+ j 2 (-) J2k+l sin[2(k+l)@]

k=i

(3.52)
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and therefore

2_ 2_
2,_ _(cos(e-_)- cos(e-_') -J _- 0 cos(e-_) +j _- p cos(e-_')

e = e • e

= Jo _- + (sines and cosines products) (3.53)

Integrating e over 2n, an approximate bound is given by

_0 pOfO 2

Po C_I C_I

[ f S_ 2/2_ P) dP d(2 dC_'pI(p,e) dpde < 2_ P JoI'_

(_0 0

= 2_(0_1-0_1 )2 j_opO PJo('_ P) dp (3.54)

asymptotic form for J (z) isThe standard
o

(2 'y_
Jo(Z) -_ \_Z) sin z + Olzl -I as z -_oo

J2(z) -*(_) sin2 z (3.55)

so that Eq. 3.54 is approximated by

fo p° [ pI(p,e) dpd _---_. (p0)2_ _ (az_a0)2 (3.56)

For an infinite target plane the integrated response does not converge.

Equation 3.56 may be applied to a finite surface by placing an upper

boundary on the integral in the denominator of Pmax" Supposing that

the target surface is made up of a set of discrete scatterers of average
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power P and occupying area A, we have for the power from the total

area included in Pmax

-5 (al 0)2 Omax(P/A) (S.ST)

The power from a target at p is P(al-<ZO)2/2 so that the ratio of the

two is

(Power from target 1

(Power from total area) :

P( l O )2/2

(_1-<_0)2

_Pmax 2 P/A

A_ 2
(3.58)

Note that this result is independent of f number and hence independent

of the length of the path over which the data are taken and of the shape

2

of the resolution cell. The area of integration _Pmax may be limited

either by the spacecraft antenna or the size of the planet itself.

C. THE EFFECT OF ERRORS ON THE INVERSION

In the last section, we considered the highly idealized case of an

exact inversion with a linearized trajectory. By exact, we mean that

our knowledge of the relative positions of the spacecraft and target is

so complete that we can compute the _j without significant error. For

the calculations made so far, we have, in effect, assumed knowledge of

the spacecraft trajectory to a minute fraction of a wavelength. At best

this is a highly unrealistic assumption. Furthermore, if high resolution

is to be achieved, particularly in the dimension normal to the trajectory,

it is necessary to have trajectory information over a path which is a

significant decimal fraction of the range, R, to the target. In prac-

tical terms, this requires the collection of data over paths that cover
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hundreds of thousands or even millions of wavelengths. Therefore, we

consider the effects of errors on the reconstruction to determine the

uncertainty that can be tolerated in the inversion.

The motion of a spacecraft is extremely smooth. In the two-body

problem, where we need consider only radial accelerations, the derivatives

of the spacecraft motion diminish rapidly with increasing order. Even

when three bodies are concerned, as, for example, in the effect that a

local moon or the Sun might have on a planetary orbiter, the effects of

the third body are perturbations acting over periods of days or weeks.

(cf. Ref. 17). Consequently, we need only consider the effects of an

erroneous orbital determination. In other words, the errors in one cal-

culation of the _j(s) are due solely to an inaccurate determination in

our theory of orbital motion. In Fig. 16, suppose that the true trajec-

tory is s, but we think that it is s'

P

St

$

FIG. 16. DEFINING THE ERROR

FUNCTION FOR THE SPACECRAFT

TRAJECTORY.

If we process for the point at p, then we are in error by E(S) rad/m

and the point response function is

=

2

fslsO e-J(_+Er ) ds{ R21(Sl-So )2

(3.59)
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Using the previous approximations for _(s)

I; I.,_/X(s2_-2ss) + j_(s)
1 -j R (R-_q)

i (_,_)a e ds (3 60)
r

s o

Supposing that the error is of the form

2
_s) = as + bs + c (3.61_

gives, from our expression for _,

_+E _ _ - s

Evidently, the result of errors up through the second order is to cause

a shift in the response function by the amounts _, _

Aq = aR(R-q) -_

(3.63)

That is, nothing is destroyed by errors of this type. The response func-

tion is preserved, but the signal we associate with p st the origin of

the _ coordinate system really belongs with _, _.

Considering only one term in E(s) at s time reveals the physical

significance of these terms. Denoting the angular error between s and

s' by U

2X (3 64)
b = Uk =U'-_-
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For small errors the displaced maxima will still be near the _,D

origin and _ will be small compared with the range, so that

h 2_ (3.65)

Linear phase errors therefore shift the image point by angle.u.

For the second-order term alone, with the same approximation

R >> n, we have

An - h R2a (3.66)

so that the quadratic error translates directly into range. In terms of

the radius of curvature of the orbit, R , it is a simple matter to
o

show that

I_o2 I 21 2_

a = - -_- (3.67)

•

where F is the error in our estimate of R . Thus
o

2)oAn: -2 _ r) 2
o (Ro +

(3.68)

In general, one would expect errors from this source to be quite small.

The constant term makes no difference at all.

There is one other error of a sort similar to the ones we have just

considered, and that is an error in the determination of the carrier

frequency. In this case, the calculated phase paths that we use in our

processor will all be in error by an amount proportional to the error

in h. If we let the true wavelength be h 0 and the erroneous wave-

length used in the processing be he, then, in the calculation of the

point response, we must use

SEL-67-042 50



2_ 2_ rt-?

s2)~ 2_ +_ -_-
_o

(3.69)

where we have again employed the approximation of Eqs. 3.22 and 23

and the geometry of Fig. 12.

Simplifying,

s ___o _3 +_/= 2 R +

^o

(3.70)

Again dropping the terms that are constant in s,

2_ [s2(?_o/_c )(R-_) - Rs2 + 2R_s

_-_ 2R (R-_) )XC/)_°I

Is - -_ + 2R_s
- h e 2R(R-n )

The principal effect is to shift change I(_,_) to

The errors that we have considered thus far are peculiar, in that

they produce systematic effects on our calculation. This is because

they enter the calculation only once as the parameter of some function

as, for example, in the use of an erroneous wavelength. A measurement

error in the determination of the array of the conical elements that

describe the path of an orbiter would be another. In this second case

the mistake can be shown to propagate through the orbital computations

to produce the linear and second-order effects that we have already

discussed. We have seen that these errors have little or no practical

(3.71)

I[_,_-R(1-)X /)X o)].
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importance. However, the errors associated with the data itself may be

critical. These may be imagined to arise in several ways, the most obvi-

ous of which include oscillator instabilities and sampling errors. More

subtle difficulties would include the effects of any atmosphere through

which our signals must pass and even the effects of the interplanetary

medium on the propagation of the illuminating wave. It is supposed that

all these sources of error will impose an additional random phase modu-

lation on our data. The phase error function, _(s), thus becomes a

random variable, which is assumed to be stationary and ergodlc. The error

function may also be assumed to be zero mean without loss of generality

since a constant may be added or subtracted from the phase without affect-

ing our final results. Then, as before

s

g(_,T_) CC f_ 1 e-J(*+_)r

s O

ds (3.72)

and

where

Sl e-J(_/+c) s> fsl e-J*
d =<g(_,n)>= r r

_s 0 s o

+oo< > : ( ) p(_)de
oo

-jc
<e >ds

(3.73)

and p(c) is the probability density function of the error function.

Similarly,
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<i(_,_)> : <Igi2> = f_i I 1

-JC,(,)-, (s,))
e

2
r

<e-J[_(s)-4")]> ds ds'

sI s1

= _s _s eJ(_(s)-*'(s)) R(s-s') ds ds '

o 0

(3.74)

-je(s)
where R(s-s') = autocorrelation function of e

By assuming that p(e) is symmetrical, we may compute these expec-

tations for g(o,o) and 1(O,O) where *(s) _ O. For tractability we
take E(S) as being made up of n independent parts. That is, p(6,E')

is such that R(s-s') : 0 if s-s _ is sufficiently large. Then we write

n

p= =n e

k=l

= x + jy (3.75)

The factor

go to zero. R

Defining:

is taken as the distance required for R(s-s') to

is still range and a is the strength of the scatterer.

O_=<x>

s I = Var(x)= <x2>

s2 : Var(y) = <y2>

(3.76)

Clearly,

<2> : <x2>+<y2> : Sl+ s2 + 2 (3.77)
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and

For large n,

density of p

Var(p) = <p2>_<p>2 = Sl + S2 (3.78)

18
we may use the results of Beckman to write the probability

2 s I + s 2

2s I 4SlS 2
p(p) = P e

(sls2) 

2
P

(20

 s2- o2) ,3.7.,X (-)m _mIm _'_sTs 2 p I2m Sl
m=O

where I is the modified Bessel function of order m and
m

f

_m =Ii , m= 0

2, m_ 0

(3.80)

The distribution of _ determines everything. If c is narrowly

distributed then _ _ 1 and c has very little effect. If, however, c

is distributed over a large part of 2_, then the mean U is small,

while the variances become large. In particular, if the distribution of

is uniform over 2_, or any multiple of 2_, then p(p) becomes

Rayleigh. For a Gaussian distribution, p(p) becomes Rayleigh as the

standard deviation approaches a full cycle. When this occurs, everything

is lost, since the phase information upon which this method depends is

completely destroyed.

D. INTRODUCTION OF THE REFERENCE WAVE

If one considers the results of the previous section in practical

terms, it immediately becomes clear that the requisite coherence for
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avoiding the detrimental effects of random phase errors is not likely

to be achieved directly with independent oscillators. Spacecraft veloc-

ities for planetary flybys or orbiters are typically on the order of a

few kilometers per second, and altitudes of a few hundred kilometers up-

ward can be expected. Thus, an f ratio on the order of one-tenth re-

quires at least seconds, or even tens of seconds at a minimum, to achieve.

If we consider a direct scheme such as that given in Chapter II, Fig. 1,

for obtaining the complex signal, then the oscillator used to provide the

sine and cosine functions and the source oscillator providing the illumi-

nating wave must be extremely stable. Letting T represent the time

over which the scattered signal is observed, we require that the spectral

line of an unmodulated signal have a bandwidth of less than l/T, after

passing through the receiving system. For a carrier frequency of _ this

requires circuits with a Q so that
O

(3 81)Qo

in both the transmitter and receiver. As a numeric example, consider a

frequency of 1 gc and an observation time of 10 sec. The minimum Qo

required would be 1010.

However, there is a simple expedient that removes this difficulty;

that is to use the illuminating wave as it is received directly on board

the spacecraft as a reference. This is possible because (1) the direct

signal is generally a great deal stronger than the reflected signal and

(2) as a result of the spacecraft's motion, the direct signs1 is usually

separated in frequency from the reflected signal. After extraction from

the composite direct/scattered signal present at the spacecraft, the

direct signal is substituted for the carrier e j_t, which we used in

our description of the analytic signal, and is used to obtain a complex

signal. This may be simply shown by writing the direct and reflected

signals as separate parts.

j( t- )
e + e (t) (3.82)

e = a ° s
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j(nt-_i•; )
e is the direct wave.Obviously, a

o

analytic signal representation of the scattered wave.

operation is to subtract not only the phase term _t,

with the complex signal, but an additional -k. .
i

.th
signal from the l target becomes

-v

The e (t) is the
S

The effect of this

normally associated

as well. Thus, the

Ei = ai eJ(_i + ki " r) (3.83)

Since all targets are equally affected, the analysis of the resolution

cell is undisturbed. We merely subtract the -k. r from the expanded
1

phase and continue as before. Even the arguments for the effects of

errors hold virtually unchanged.

The oscillator stability requirements are relaxed considerably by

use of the direct wave. Suppose that the transmitter phase jitter is

given by a random term _c(t) added to its _t variation.

: - r + ¢_(t)at ki

While the phase of the reflected signal is

02 = _t - kp.r ' (r-Pi) + Ce (t-&) (3.84)
1

The telun

At =

(r-_i) " upir I_-;I

gives the total differential time delay along the direct and reflected

paths, neglecting second order retardation, as illustrated in Fig. 17.
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At=Atl+/kt 2

FIG. 17. TOTAL DELAY PATH.

After performing the operations of Fig. i0, the analytic signal from a

point target becomes

E ° m

1

a.1 J(¢i ÷ _'1 " r ÷ ¢C (t) - ¢c (t-At))
e (3.85)

To the extent that _(t) and _c(t-At) are correlated, the variations

that they represent cancel out. Furthermore, this is independent of the

length of the observation time T. Again, requiring that Q be large
o

enough to guarantee the needed stability,

(;-Si) a- - - I;-SI
Pir (3.86)At

Qo > :

Therefore, the oscillator stability now goes directly as the path length

difference in wavelengths. The distance associated with this Qoj C/At

is referred to as the coherence length of the oscillator.

E. THE OUTPUT SIGNAL-TO-NOISE RATIO

Assuming that our radar is operating within the restrictions for

preserving phase coherence, all the errors considered so far have repre-

sented imperfections in our knowledge of the experimental parameters
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under which our data are taken, with the conclusion that the principal

effects can be summed up as a distortion of the coordinate system to

which the recovered data are referred. However, the most severe problem

to be expected in any form of planetary radar is that of overcoming the

receiver noise with signals that have propagated over extreme ranges

and are received only after reflection from the surface of a planet.

Therefore, the scattered signal exists in the presence of additive ther-

mal noise, and the processor must act on signal and noise simultaneously.

This is the situation we shall now consider for the point target. For

convenience in describing the noise, the signals will be considered in

the time domain.

The method of recovery has been to multiply by the complex conjugate

of the expected signal from a given target and to integrate. Thus, if,

as before, the composite signal is E(t), then the processor may be

written as a convolution with the expected signal from each portion of

the surface, sampled at the appropriate time

t t

E(t IE <tIdt-- IE <t- )dt
to 0

T=O

(3.87)

where _ is an arbitrary gain factor. This may be modeled as a bank of

linear filters with impulse response E.(-T) -t I < T < -t O sampled atl

T = O.

I_,1 1_21 I"_nl

FIG. 18. PARALLEL FILTER

MODEL FOR PROCESSOR.

Now, to E(t) we add white noise with complex envelope N(t)

that for a single filter, our model becomes
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((t)

FIG. 19. ADDITION OF NOISE TO PROCESSOR.

If we let Gi(_ ) be the transfer function of the filter with im-

pulse response E.(t) and assume that the noise is a stationary random
1

process, the output noise power density is No/2 IGi 12

2
, and the out-

put noise power is just the density integrated over frequency,

Noise Power out = 5 2 NO /+co7 _ IGi(_)l2 d_ (3.88)

By the convolution theorem, the filter response to E.(t) itself
1

may be expressed as

+co(_ Gi(_ ) G:(_) e -j_T d_
--CO

(3.89)

when T = O, the ratio of the output powers is

1512 d
S CO
m

0 (_)12T_ tGi
- No/2

d_

d_D

(3.90)

Recognizing that the integral in the numerator of the right-hand

side is just the energy contained in the signal,
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E = IGi(cO)l 2 d_ (3.91)

gives

S 2E (3.92]
%1

N N
o

Filters with an impulse response which is proportional to a re-

versed version of the complex conjugate function of a given signal (or

equivalently, have a transfer function which is the complex conjugate),

are said to be matched to that signal. 19 This definition certainly

applies to what has been done here. A well-known property of such fil-

ters is that they maximize the output signal-to-noise in a mean square

sense, and that the signal-to-noise ratio depends only on the energy

in the signal and the spectral density of the noise as given by Eq. 3.92.
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IV. THREE PHYSICAL INTERPRETATIONS

A. SYNTHETIC ARRAY

Suppose that instead of a spacecraft recording signals along its

trajectory, we consider the construction of an array of infinitesimal

antennas, co-linear with the trajectory, as in Fig. 20.

(n)

_ • • • • ;7/"///

n

'V 3"4

e o

FIG. 20. TIlE ARRAY ANALOGY.

The scattered fields arriving at each element of our array would be the

same as before and given by:

-j [_t-kr (n) ]

e(t,n) a e (4 l)- r(n)

In Eq. 4.1, we suppose that all the elements are equally spaced with
th

distance _, and r(n) is the distance from the target to the n

element. If _n is the phase shift associated with the transmission
th

line running from the n element to the summing point and the elements
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have equal gain, then the output of the array is

N -j[k r(n)+_n ]

eo eJ_t _ e= a r(n)
1

The magnitude of e has a maximum if the _ are chosen so that
O n

kr(n) + _n = constant for all n

or

(4.2)

_n = -k r(n) + c

Substituting this result in Eq. 4.2 we obtain

(4.3)

lel=lal
0

-j [kr (n)]-kr( n )]
e

r(n)

1

= a r--_- if R _ r(n) (4.4)

However, the multiplication by e +jkr(n) and the summation of the con-

tributions along the path are precisely the operations we introduced in

Chapter III for the recovery of the lal. The phase delay introduced by

the connecting transmission lines corresponds to the multiplication by

e jkr_n) while the connection at the summing point performs the integra-

tion. The difference is that whereas an array simultaneously samples

and sums the incoming fields along the entire path, the spacecraft can

only sequentially determine the amplitude and phase field at each point

and in some way record the result so that the weighting by the proper

phase factor and integration may be done later. In terms of this analogy,

the use of the reference wave in Chapter II is just a device for calibra-

ting the phase measurement.
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The usefulness of this interpretation is limited by the parameters

of our analysis. Since we are always interested in path lengths that

are a significant fraction of the range at the point of closest approach,

we must always deal with spherical wavefronts from our targets. In fact,

it is the different curvature of the wavefronts from various ranges that

gives us resolution in depth. Thus, our targets always lie in the near

field of the array. Consequently, one of the more powerful tools of an-

tenna theory, the Fourier transform relations between the fields in the

aperture of an antenna and its radiation pattern, cannot be applied

directly to our problem. Still, the idea that the processing represents

an array focused at close range is a useful concept.20'21'22'23

B. THE TRACKING FILTER

We have previously considered the inversion as being made up of two

distinct operations, one where the data are collected by heterodyning the

scattered signals with the incident wave, and a second operation where

we correct the data for the phase changes from a given target as a func-

tion of position and integrate the result. For purposes of calculation

and data interpretation, the geometrical approach adopted in Chapter III

proves itself most powerful.

However, perhaps the simplest approach to understanding the process-

ing for a point target in familiar terms is derived from a consideration

of the time-frequency characteristics of the signal scattered from a

point as the spacecraft goes by, and the changes in the processor for

the same time period. This is the interpretation we shall now explore.

Re-drawing a simplified block diagram for processing the data from

a single point with the signals as explicit functions of time, we have

S Cc}?EST I P.ocEsso.
I

o;Jkrlt) I

1 I.

FIG. 21. SIMPLIFIED PROCESSOR.
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The function ejkr(t)

craft at t and s(t)

in Eq. 2.61.

is again the distance from a target to the space-

is the change in spacecraft position we introduced

Fig. 22 gives the geometry.

l_(t) //to

11

FIG. 22.

GEOMETRY.

THE SIMPLIFIED

m

Jki's(t)

Recognizing that the reference signal e functions only as

a means of providing a coherent reference signal necessary for practical

reasons, we may give a mathematically equivalent diagram with only one

frequency multiplication.

-jkr(t)

_l ° ( )dreJkr(t) _tt'to

FIG. 23. TRACKING FILTER FORMULATION.

The overall effect is to extract continuously the Doppler shift associated

with a particular target and to integrate the result for a time tl-t O.

In the frequency domain, this corresponds to tracking continuously the

target signal with a narrow-band filter whose passband is on the order of

1/(tl-tO) Hz.

It is a simple matter to verify our signal-to-nolse ratio calcula-

tions. The signal power out is lal 2 while the noise power kTB/2,is

where B = i/tl-t O. Therefore
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m _ _ m

N kT 1 N
_ O

2 T

(4.5)

as before.

This approach also provides some additional insight into the resolu-

tion mechanism, particularly resolution in range. Using our straight

line approximation to the flyby:

x 2 ))_r = [R2 + (t

r

(4.6)

Multiplying by 2_/k, we have the instantaneous frequency shift of

v x/R (4.7)
= -2_ h

(i + (x/R)2) _

For a single target this gives the S-shaped curve plotted in Fig. 24.

x FIG. 24. TIME-FREQUENCY

SIGNAL TRACKS.
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As we have already seen, the recovery of the signal that follows this
curve is accomplished by continuously tracking this signal with a narrow-

band filter over somefraction of the trajectory. Signals from other

targets are rejected by this mechanism. Supposethat there are just two

targets present, neither of which is at the origin of our coordinate sys-
tem. For convenience, take one as displaced parallel to our trajectory

and the other as displaced in a direction normal to the trajectory. The

trajectories of these two points and filter tracking the origin are all

given in Fig. 25. Clearly the resolution parallel to the path can be

v k

FIG. 25. TIME-FREQUENCY TRACKS AND THE TRACKING

FILTER.

quite good, since only a slight displacement in the _ direction is

required in order that the signal avoid the filter passband altogether.

In the R-direction, however, the signal always passes through the fil-

ter, so there will always be some contribution to the output from this

target, although its relative strength may become quite small when the

filter tracks the desired signal for a longer and longer time.

One other important property of the method is revealed by this for-

mulation. As x/R becomes larger,

v (4.8)
c_2_ h

for all targets near the origin. Thus, if the filter is made to track a

given signal too close to its asymptotic values, then resolution is lost

as the signals from other targets approach the same asymptote.
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C. THE HOLOGRAM ANALOGY AND OPTICALRECONSTRUCTION

The analogs of the antenna array and of the tracking filter demon-

strate a striking connection between spatial and temporal signals, i.e.,

an array integrates in space in a manner that is completely equivalent

to a tracking filter in the time domain. The third analogy is even more

remarkable, in that it provides an automatic method for performing all

the operations implied by the first two for all targets simultaneously.

Furthermore, it is easily explained in terms of the expression with which

this work really began, Eq. 2.38 of Chapter II:

E (r)= f K(r')e-JkI - 'Ids
s -s

(4.9)

We wish to apply this expression to diffraction phenomena that occur

as the result of a plane wave propagating through a two-dimensional medium

of varying transmission. We assume that there are no spatial variations

-Jki.r
in phase associated with the medium. That is, in Fig. 26,.if e

.

Es(r)

FIG. 26. SCATTERING BY A

TRANSMITTING SCREEN.

is the incoming plane wave, and T(r) is the transmission coefficient

of the screen and is real, then immediately after passing through the

screen, the outgoing wave is
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• .r T

E.(r') = T(r') e -Jki (4.10)
1

The integral formulation of the scattered wave may be applied by substi-

tuting the displacement current associated with E.(r')
l

= (4.11)

for current density. The integral must be evaluated on a surface when

the currents are known, so we take, as the surface of integration, a

plane lying just above the diffracting screen. Except for an unimportant

constant, the field at any point beyond the screen is then given by

Eq. 4.12

-- -- -- ,r !
-jklr-r' I-Jk i

Ei(r ' ) eEs( ): i[_;,1
ds (4.12)

For the proper choice of r, the integral is identical to the

Eq. 3.20 we developed for recovery of the amplitude from a point source.

Suppose that T(r') is made to correspond to the data. taken by our

spacecraft. Since any orbit is always a plane curve, this can always be

accomplished by scaling the orbit onto the diffracting screen, and causing

the transmission along the scaled orbit to vary with the data.

Elsewhere, the screen must be opaque. The data must be in a real

form, such as that given by Eq. 4.13, for a point source originally at

p.

_(_, ) : e

Lr'-pl
e-J(klr-Pl-k'z'r').} _ (4 13)

If the wave number of the illuminating wave is now scaled by the

same factor and given a direction that corresponds to the negative of
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£s(_ I

FIG. 27. TRANSMITTING SCREEN

WITH SPACECRAFT DATA.

the original reference wave, Eq. 4.12 with T(r') given by Eq. 4.13

becomes

+j(ki_'-pl-ki'r') -j(kl;-r'l+ki.;')

1 fs e e
(;) = g

s caled Ir'-pl I;-;'I
trajectory

ds

• .r ! )-j(klr'-pl-k i r') -j(klr-r'l+k i

l_s e . e
+ 2 caled Ir'-pl Ir-r' I

trajectory

ds II

(4.14)

If r = p, part I of this expression is identical to the starting integral

for the calculation of the image point response. Part II represents a

spurious response. The intensity of the diffracted electric field due to
B

I exactly recreates r, the image point response we calculated in Chap-

ter II.

Furthermore, the response occurs at the point in space that corre-

sponds to the original target position. We must be a little careful.

The important portion of the integral is the function r - r' in the

exponent of the kernel. As was pointed out in the original discussion

of the image point response, all targets lying on the same circle about
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the original trajectory produce a response at the same position, since

they are all related to the trajectory through the same phase function.

It is only by knowing the location of the target surface that we are able

to map the surface brightness distribution.

Now we have the opposite situation. For a straight line trajectory,

the diffraction screen reproduces a bright spot not only at the original

point, but at every point on a circle centered on T(;) that contains

that point. However, if we sample the field intensity on a surface that

has the same geometrical relationship to the T(r) as our planetary sur-

face had to the original spacecraft trajectory, we will recover the sur-

face brightness distribution spatially undistorted, albeit, it is convolved

with our point response function. It is a simple matter to show that for

a collection of point scatters, the surface brightness distribution is

convolved with the point response in the reconstruction. Because our

functional relationship has remained unchanged, the noise behaves in ex-

actly the same manner as before and processing gain is retained.

An interesting point is that when r is far removed from _', so

that the vector directions (_-_') and (p-r') are approximately the

same, the integral becomes

-Jkl_'-Pl _s (4.15)
I -_ e (1) ds

Ir[-[p[ caled

trajectory

m

which looks like a plane wave originating at p. This approximation

always applies to II, since -p represents a point behind, i.e., on the

side of the illuminating wave, the diffracting screen. Therefore, II

represents a uniform background intensity that apparently comes from a

point source behind the slit. An obvious method for avoiding this back-

ground contribution is to choose the geometry so that the real response,

due to I, falls outside the wave due to II.

There is nothing in our derivation thus far that is critical in

terms of frequency. Herein lies a possibility for analog reconstruction

of the surface brightness. By scaling the data from radio to optical
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frequencies, it becomes possible to create a diffracting slit, such as

we have described, by scanning photograph plates with a beam of light,

intensity-modulated in this manner automatically generates the diffrac-

tion pattern we have been discussing. A second photographic plate, placed

in the original target plane, as in Fig. 28, scaled by the same factor,

will then automatically record the reconstructed brightness distribution.

FIG. 28. RECONSTRUCTION VIA

TRANSMITTING SCREEN.

A two-dimensional diffracting screen with T(r) corresponding to

the intensity of the interference pattern generated by a coherent source

of illumination and a scattered wave is called a hologram. It is easy

to show that the interference pattern contains, in addition to several

spurious products, the same data that our spacecraft collects in one
24

dimension by product detection. Much of the theory of holograms is

germane to the reconstruction of the surface brightness distribution and

has been discussed elsewhere. 24'25'26
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V. RELATIONSHIP BETWEEN THE RESOLUTION CELL AND SIGNAL-TO-NOISE RATIO

A. PROCESSOR FOR MAXIMUM-LIKELIHOOD ESTIMATE

The conventional radar problem rather naturally divides itself into

two parts: (i) the detection problem, where one is concerned with de-

ciding when a target signal is present in a background of noise, and

(2) the resolution problem, where, usually with the assumed absence of

noise, one is concerned with fundamental limits on the radar's ability

to discriminate between closely spaced targets. When stated in this way,

the radar problem is extremely well understood and we have drawn upon

ideas of detection and resolution in calculating the signal-to-noise

ratio and image point response.

A little reflection will show, however, that the ordinary develop-

ment of the detection and resolution problem cannot be carried much fur-

ther here. Detection, in the sense of determining the presence or absence

of a target is completely out of place, because one of the major assump-

tions of this report is that the target is known to exist and moreover

that our knowledge of its position involves only a small uncertainty. A

straightforward application of the resolution cell results is inappro-

priate because the assumptions of high signal-to-noise ratios made in

most developments and of a knowledge of the target environment are gen-

erally never true for the applications envisioned. Nevertheless, we shall

still find the developments of Chapter III extremely valuable later on.

And so, we take a more abstract approach. This time, we assume that

the brightness distribution over the surface is a random process generated

in some unknown manner by the interaction of the incident wave and the

surface itself. Further, assume that we measure the scattered fields at

our spacecraft as before, and that the relationship between the scattered

fields and the current distribution is known and is given by our integral

expression Eq. 2.38. What, then, is the best estimate of the surface

brightness distribution averaged over some area, and how does the quality

and form of the estimate vary with the size of the area itself, the sta-

tistical parameters of the brightness distribution and the noise? In other

words, how does one trade resolution for signal-to-noise ratio?
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Probably the most difficult portion of this problem is the selection

of a stochastic model for the surface with some basis in reality, but

which is tractable at the same time. Almost any presumption about the

surface is likely to be wrong. Therefore, one is led to select some

model for the surface, derive the expression for an estimate on the basis

of the model, and then examine the sensitivity of the formulation to the

original assumptions. This is the goal of this chapter.

We begin by assuming that the current distribution has the same

basic character everywhere, but that for one reason or another, varies

in amplitude from place to place. Such an assumption might be based on

the belief that the same sorts of material stresses and strains act to

roughen the entire surface but that the brightness varies from place to

place because of shadowing or variations in the electromagnetic properties

of the material.

Designating the complex surface current distribution as a(_,_), we

define the average brightness over the area _ by

A2 = (a)2 dn (5.1)

and then take

= (5.2)

so that

2 " 1F!a(_,q)l2-

71 f_ 171 d_ dq :TJ_ A2 : 1
(5.3)

The quantity A then is fixed for any given _. Introducing the

geometry given in Fig. 29, the signal received along the trajectory

may be obtained from Eq. 2.38. Designating the kernel by f(_;_,_) and
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FIG. 29. GENERAL GEOMETRY FOR

EXPANDED RESOLUTION CELL.

neglecting the constants

-jkr

f(_._,_) e' - r , and

v(_)-- f_ a(_,_) f(_;_,_) d_ d_---- Af_ 7(_,_) f(_;_'_) d_ d_ (5.4)

so that the received signal is

s(_) = v(_) + N(_) (5.5)

where N(_) is the complex envelope of the receiver noise when the space-

craft is at position _. The quantity N(_) is taken as stationary,

white, and Gaussian.

Autocorrelation will be designated by _ with a prefix to indicate

the corresponding variable. Thus

7_(_,_',_,_') =(7(_,_) _*(_;_')_ = _(_)

so that

A 2
a_O = y_O where

2 )2 )2= (___, + (_-_, (5.6)
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and

n_(_,_') _ _08(_-_ ' )

v_(_,_,) = <v(_) v*(_,)>

s_(_,_') = (s(_) s*(_') _ = n_ + v_

The autocorrelation function of v(_) is calculated from

v_ =<_(_)v(_,)> =

= A2f f (5,7)

The term 7_ is clearly Hermitian and it is a simple matter to show

that v_ is also, Let gD be an eigenfunction of v_ so that

fg p. gv = 5p.v
(5.8)

and

iv * d_h_ gv = Tgv
(5.9)

The function v_ is also positive-definite since

h(t) v(t) dt = (t) h*(ti)(v(t) v*(t')ydt dt'

=ffh(t) h(t') v_O(t,t') dt dt' > 0
(5.10)
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for all h(t).

Therefore, by positive definiteness and Hermitian properties of

27,28

v_ , the h are positive and real. It follows from Mercer's

theorem that the autocorrelation function may be expanded in terms of

its own eigenfunction as

O0

1

(5.11)

For

we have

/gS g;,SS = * = ( ) = X_ + Y_ (5.121

// * >dt dt' 2(A2h o lay<ss > -- %% <ss* = + _ )_ (5.13)

thus

<ss:> - o (5.14)

A linear operation on a Gaussian variable produces another Gaussian

variable. Thus the S are independent, Gaussian random variables of

zero mean and

which implies

oo is12

co 2(A2h + N )
I i _ o

P(_/A2) : _ 2_(A2h + N ) e

o

(5.16)
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To obtain a maximum likelihood estimate, we require

p(S[A 2) = 0
bA2

(5.17)

In turn,

i +N )]
co [[s 12/2- o

1 (A2_ + No)2

= 0 (5.18)

This relation has also been given by Hofstetter 29 for a similar

estimation problem, starting from our Eq. 5.5.

In general, Eq. 5.18 cannot be solved for A2. However, we make

some progress by expressing our estimate of A 2, A2 in terms of A2
L..

itself

co

I ([Sp.12/2 - N )

^ o (NO + )A2 = 1 A2h_

co

I (A2X _ NoI +

(5.19)

Or

co h

(Is L2/2 - N ) _ )2
^ o (No/A2+
A2 = I {.t.

co h2

I (No/A2 + h_12
i
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where

N (noise power per unit bandwidth)__o is
2 (signal power per unit surface area)

A

This will become a critical parameter.
2

Substituting for IS I from Eq. 5.13

CO

(A_ + No-No )2 _ )2^ P (A2h + N
A 2 = 1 }_ o _ A 2

Co h2

(A2 + NO

(5.20)

so the estimate is unbiased, at least as long as our choice of A 2 in

the processing is correct.

While the general variability of the processor form with changing

values of A 2 is of great interest, the case of special interest to us

is

so that the estimator becomes

N

o >> 1 (5.21)
A2

CO

(Is [2/2 - N O) )Xp.
A

A2= l (5.22)
CO

1
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For this case, the variance of the estimate is easily shown to be

CO CO

" la

Var(a2) = l = 22 ioo 2 2' ' (5.2a)

1

Hofstetter has computed the efficiency for this case with the result that

2

elf = o
"* 1, (5.24)

Co (1 A2h_2 _ h2 A 2_. + _--_o/ _'2

(I A2 )2I 1 + _.._X i
0

No/A2" large, this estimate approaches the Cramer-Rao lowerSO that for

bound for the variance of the estimate.

The estimator is basically

A O0

A 2 = k _ IS t2 _ (5.25)

1

Again, for the case of interest, the variance is

co

Var A 2 -, I (5.26)
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The estimator will be recognized as the Hilbert quadratic form

A 2 = k s(t) _*(t,t )s*(t') dt dt'

t O t O

(5.27)

Now by Eq. 5.11

CO CO CO

),2 = ),, glagla ?_vg:g dt dt'

1 1 1

VCPVq) dt dt' = IVCpI2 dt dt' (5.28)

so that

2

^ N

A 2 o

Var =ffl i2 dt dt '

(5.29)

and

v_z A_ !

(A2) 2 \A2/ff I_12 dt dt

(5.30)

The autocorrelation function is the important ingredient. Maximum-

likelihood processing consists, at low signal-to-nolse ratio, of matching

the processing filter not to the expected signal, but to the expected

autocorrelation function.
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B. CALCULATIONOFSOMESIGNALAUTOCORRELATION FUNCTIONS

Having determined the general form of the estimator in a fairly

unrestricted manner, we are now obliged to make some assumptions about

the surface in order to proceed further. Since, as has already been

pointed out, the usefulness of any of the results depends on the sensi-

tivity (or rather insensitivity) of the estimator to our surface model,

several different cases will be considered.

The estimator is a time-varying filter whose impulse response is

equal to the expected autocorrelation function of the scattered signal

As before

v_(_,_ t) =_ 7_(_'-_',_,-_* ) f(_;_,_) f*(_';_;_f) d_ d_ d_' d_'

(5.31)

where the various terms are defined by Fig. 30 below, and we have assumed

a linear trajectory once more.

0

_0

FIG. 30. LINEAR GEOMETRY FOR

EXPANDED RESOLUTION CELL.

The quantities f are given by

-jkr

f(_;_,_) _ e
r

and

jkr'

e
-- r'

(5.32)
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Considering the most extreme case first, we take

2
= B(p) , P = (/k_2 + /k 2)

7

snd (5.33)

_= _ - _,

/kq=q -q'

This would correspond to a "white" surface. We have

v_0(_,_,) = fA_ 5(O) e-Jk(r-r')rr' d_ d_ d_' d_'

as

f e-Jk(r(_;_,q) - r'(_';B,q))= rr'

-jk(r(_;_,_) - r'(_';_,T_))

Vq)(_,_,) _* err' /ks

d_, dq

-* /ks (5.34)

Thus, as the area goes to zero, we obtain the matched filter used in the

image point response. To see this

A2 : S ss_ :f s(() s*(_') e*j(kr(g) -r(g'))r,r' d_ d_'

(5.35)

as before.
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For this case, the variance is trivial

2 - 1
(rr')2

45.36)

so that

Var A (No_ 2 r2r '2 (No_2 1 (No_ 2
45.37)

Changing _ changes the estimator. Consider _ as a linear region of

width A_ between _ = a, _ = b, _ = O.

(5.38)

Over a short path, the approximations indicated in Fig. 31 are suitable,

El

FIG. 31. APPROXIMATION FOR

EVALUATING CORRELATION

FUNCTIONS.

/_o

with the result that the path difference is given by

(5.39)

Therefore,
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61

0

eijk((_-_')_/R + r(_)-r'(_!))

rr I
d_

r(_)-r (_')) f_il e+Jk(_-_ )_/R d_

=An JJ_( '

where

rr' slnc (C-C,) _. (5.4o)

= _l-_O

A similar extension applies in the n direction. Having integrated

over one strip, we need only add up the strips. Again obtaining the

approximations from Fig. 31.

e-Jk(r-r')// eJk(_-_;)_/R eJkI%/_2+R2 - _'_+R3)I]/R d_ dqv q)(_'_') = r-_;

where
-jk(r-r') [(_

= e sine

= ql-qO
(541)

The appearance of the sinc function as a weight on the point processor

is interpreted as accounting for beats between different portions of the

resolution cell when it is expanded.

But how does the processor change with the autocorrelatlon function?

-al_-_' I - al'q-Tl' I (5.42)
7q) = e

Then

7q) = e-Jk(r-r' )_i e-al/kl]l - al/kl]l eJkC d_ dl] dZ_ dZ_1] (5.43)
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as before

e- R rl-_t R (5.44)

giving

_=_H

-jk(r-r') 4 I_ I_2+ 2e --_ sinc
a

(5.45)

provided a is large compared with the area of integration.

the simplest case to visualize is the Gaussian

_ + A2)
7_ = e

Probably

which y_elds

+
a

= _H e _2+R22 sinc kHR - _ '2+R2
v a

Finally, the coherent surface gives

v_ =H -_ sinc -- - sinc (_-_') (5.47)

C. THE SIGNAL-TO-NOISE RATIO

Under the assumption that thermal noise dominates the process made
A A

in the derivation of the variance of A2 the ratio of the power in A 2
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a

to the variance of A 2 is the signal-to-noise ratio. That is,

2

S _ (A 2 ) A4 If- ^ - 2 I_12 dE dE'

Var A 2 No

(5.48)

The autocorrelation function v_ calculated in section B can be used

in the integral. For convenience, the expression will be normalized by

N:/A4- and only the integral will be determined.

First, for the completely incoherent surface from Eq. 5.33

[< )]IV_l 2 _2 sinc2[_ (_-_')]sinc2 kH _2+R2 _ (5.49)

Substituting for No2/A 4 • S/N,

ff l 2 d_d_' = Z2H2// slnc2 [_ (_-_')] sinc2[_(_2+R 2 -_)]d_d_'

(5.50)

This is easily approximated for expansion along _ by

fl_Id_ d E' _ H2_ 2 (_i-_0)2 for _, H << (_i-_0)

H2_ (_i-_0)2 for H << (_i-_0) ,

< (_l-_O) ,

and H < _ (5.51)

Similarly, the coherent surface gives
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so that

fflv l 2 for H,_ << (_l-_0)

for H << (_i-_0),

< (_l-_0),

and H < E (5.53)

The Gaussian case is also instructive:

-a(A3 2 + /x,_ 2)

7¢p= e

,.2+ , 2

[vq)[2 = i12_2 e 4
a

sinc2[_ (_-_'I sinc2'[R_i2+R2-J_'2+R2)]

(5.54)

If 1/a << H,_, then the sinc 2 dominates the integral so that

frill 2 d_ d_'~ H4_4
a

-- (_-_1) (5.55)

This corresponds to a correlation area that is less than the size of the

area _. When compared with the completely coherent expression, it

immediately follows that

H2_ (_1__0) < H4_ 3 (_l-_0)4
a

as one would expect.
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VI. REALIZATIONS OF THE ESTIMATOR

In this chapter we will show how the kernels derived in Chapter V

may be realized. The form of the maximum-likelihood estimator

s_*s* d_ d_'

derived in the last chapter, is equivalent to the optimum detector for

stochastic signal. 30'31'32 In the succeeding few paragraphs we shall

lean heavily on the detection problem work but shall not follow it ex-

actly, and we shall put it in a form better suited to our purposes.

It is convenient to have the form of the estimator in real variables.

Breaking up the correlation function and signal into real and imaginary

parts,

s=_+jq

q)=v_ + je

(6,1)

we can easily show that our estimate becomes

t t I

A 2 =

1 0

[_(t)_(s) _(t,s) + n(t)q(s) _(t,s) + 2_ne(t,s)]ds dt

(6.2)

In obtaining this result, we have made use of the facts that

ImA=0

and _ = 8" since _ is Hermitian.

A

There are several alternatives available for obtaining A 2 other than

direct calculation of the integral. Since in the development of _ we
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-jk(r-r' )
always had an e

and e the sin k(r-rf).

collectively as h(s,t),

factor, _ will always contain

Denoting the other factors in

the kernel is

cos k(r-r' )

and @

_(t) _(s) cos k(r-r') h,(t,s) + _(t) _(s) cos k(r-r') h,(t,s)

+ 2_(t) _(s) sin k(r-r') he(t,s ) (6.3)

Assuming that hl(t,s) = as it generally is from the previoush(t-s),

section, the realization is

t!

FIG. 32. FIRST REALIZATION, TIME INVARIANT
FILTER.

32
A second, more general, realization is given by Price and Green

33
from Middleton. For this case, we must have an impulse response sat-

isfying

h(t-_) h2(ff',ff)dff' for all t in Ca,b) (6.4)

Then we have
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_(t)_

I cos kr(t)

) L

FIG. 33. SECOND REALIZATION, TIME-VARYING FILTER.

The third realization is the familiar weighted radiometer. We require

a filter hs(Z)., so that

IHs( )I 2 : h((r) e jc0(r d(T (6.51

Then we have

2

FIG. 34. THIRD REALIZATION, WEIGHTED RADIOMETER.
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The fourth realization is in the form of three correlators followed

by a special filter_ The deviation follows directly from a change of

variables in the double integral. Taking the first term as an example,

_(t) _(t') COS k[r(t) - r'(t')]h(t-t') (6.6)

Changing variables

t- t' =A

(6.7)
t + t'= _

we have

t -t
1 0

A_
2

f to_t I

/__
2

_=tl-l_l
cos[k(-_-)- r(_)lh(A)d_ dA

(6.8)

which is achieved by the processor given below.

((t)_AUTO- __

co=kr(t) '_ CROSS [_._,

[_._ CORRELATOR I ,w

sin krit)

.... 1 _ '1 AUTO-I
_"_ - I_°""E_AT°"I

FIG. 35. FOURTH REALIZATION, AUTO-CORRELATOR.
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All of the above realizations may be achieved physically by means of

regular filtering techniques or numerically with digital computation.

This latter possibility offers considerable flexibility since the require-

ment of physical realization may be removed.

There is still at least one case of some interest left; this is the

holographic or diffraction screen realization of the maximum-likelihood

estimator. As an example, consider the situation in Fig. 36. This is

FIG. 36. FIFTH REALIZATION, OPTICAL ANALOG.

essentially Fig. 28 for the hologram reconstruction, except that the

illumination has been modified with a slit so that an extra weighting

function appears as a factor in the reconstruction integral. Supposing

that the slit is adjusted to produce the familiar sinc (x) diffraction

pattern, we have for the reconstruction

2

e jkr g(x) sinc (x-A) dx
(6.9)

or

eJk(r r') g(x) g(X') sinc (X'-/k) sinc (x-f_) dx dx'
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which will be re_ognized as equivalent to the Middleton processor for a

physically unrealizable filter. 33 The integration with respect to A

may be achieved by moving the slit parallel to the data string at constant

velocity and recording on photographic film. The film automatically

squares and integrates.
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VII. EXPERIMENTAL RESULTS WITH LUNAR ORBITER SPACECRAFT

A. NATURE OF THE EXPERIMENT

The first experimental tests of the application of bistatic-radar

to celestial bodies were made in October 1966, and March 1967, using

Lunar Orbiters I and III, respectively. These spacecraft carry a te-

lemetry transmitter which, with appropriate filtering equipment on the

ground, can be used as a source of continuous wave radiation on a wave-

length of 13 cm. In addition, these spacecraft each have two antennas,

a discone omni-directional antenna and a high-gain paraboloid, which

can be arbitrarily oriented in space. Observations were made using both

of these.

The radar parameters for the two cases are given below:

Radiated Power

Antenna gain, transmitting

Antenna gain, receiving

System temperature

Omni-Antenna

High-Gain

Paraboloid

lO0-mw CW 3-w CW

-i db 22 db

57 57 db

80 OK 160 OK

The polarizations of the two transmitting antennas were not deter-

mined; the polarization of the receiving antenna is right-hand circular

in the radio sense.

The receiving system temperature was largely dependent on the phase

of the moon during the observations and this, along with certain con-

straints on the Sun, Earth, and spacecraft geometry for the use of the

high-gain antenna, accounts for the differences in system temperature

for the two cases.

B. EXPLANATION OF THE OBSERVATIONS

Four examples of the records obtained are given in Figs. 37-40.

These records represent spectra, measured with respect to the instanta-

neous spacecraft carrier frequency. Time advances to the right. Signal
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2508 2509 2510

TIME (GMT)

STANFORD UNIVERSITY

2511

OCCULTATION
IMMERSION

LUNAR ORBITER OCCULTATION

I00 MW RADIATED POWER

OMNI ANTENNA

12 OCT 1966

FIG. 37. TIME FREQUENCY TRACKS, LUNAR ORBITER I, 12 OCTOBER 1966, 23 GMT.
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Z _-_

O N

0316 0317

APPROXIMATE TIME (GMT)

0318

LUNAR ORBITER III 19 MARCH 1967

5W RADIATED POWER

HIGH GAIN ANTENNA

FIG. 38. TIME FREQUENCY TRACKS, LUNAR ORBITER III, 19 MARCH 1967, 0300 GMT.
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FIG. 39.

LUNAR ORBITER m' 19 MARCH 1967

3W RADIATED POWER

HIGH GAIN ANTENNA

TIME FREQUENCY TRACKS, LUNAR ORBITER III, 19 MARCH 1967, 0600 GMT.
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APPROXIMATE TIME (GMT)

FIG. 40.

LUNAR ORBITER m" 24 MARCH 1967

3W RADIATED POWER

HIGH GAIN ANTENNA

TIME FREQUENCY TRACKS, LUNAR ORBITER III, 24 MARCH 1967, 0800 GMT.
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intensity is represented by relative shades of gray, with the strongest

signals being white. The ordinate is frequency difference from the

carrier in kHz. System noise appears as a speckled background, while

the weak, continuous horizontal traces are due to imperfect filtering.

The carrier frequency is the strong, continuous, horizontal trace appear-

ing either near the top or bottom of the records.

The observations in Fig. 37 were made on 12 October 1966 while Lunar

Orbiter I was approaching occultation immersion over the lunar crater

Kastner on the eastern limb. Radiation was through the omni-antenna,

and the radar parameters given for this condition apply. The altitude

of the spacecraft was initially about 60 km, and decreased continuously

to about 40 km during the period spanned by the record; its velocity was

approximately 1.9 km/sec away from the Earth. Reflections from the sur-

face appear as time-varying signals of decreasing frequency. (In this

and the succeeding records, it is presumed, because of their continuity,

that the persistent reflections are due to a fixed scattering center.)

The spacecraft carrier disappears when the vehicle moves behind the limb

at the time indicated as occultation immersion.

Figures 38 and 39 represent observations of Lunar Orbiter III made

on two separate orbits on 19 March 1967. Radiation was through the

high-gain antenna with the appropriate radar parameters. The antenna

direction was to the side of the spacecraft's flight, and such that it

intersected the moon with an angle of incidence of approximately 45 °,

and at a range of 600 km. The geometry was such that the received energy

corresponds to oblique scattering. As one would expect from the develop-

ment of Chapter If, the reflected energy is narrowly confined in frequency

by the limits of the antenna beamwidth. Again, in Fig. 39, several dis-

crete scattering centers stand out, and their progress through the antenna

beam is easily followed in the frequency domain.

The conditions under which the records in Figs. 38 and 39 were made

differ, in that the beam was directed at slightly different portions of

the lunar surface. In the first, i.e., Fig. 38, the beam was directed

at the crater Langrenus at the time the high-gain antenna was switched

on, and the crater was then slowly carried out of the beam by the motion
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of the spacecraft. Figure 38 is also of interest because the specularly

reflected signals from the side lobes of the high-gain antenna are visible

just below the carrier at the start of the record. For Fig. 39 the beam

was directed to pass just south of Langrenus across an older region of

the surface, _hich is composed primarily of maria.

Figure 4(I gives observations under circumstances similar to those

in Figs. 38 and 39, but the antenna was made to sweep an area of the Moon

from the crater Albategnius near the center of the disk, south of Delambre,

near Maskelyne and into the Mare Tranquillitatis. The features pointed

out in Figs. 38 and 39 are present in this recvrd as well.

C. REDUCTION OF OBSERVATIONS

The record in Fig. 37 has been used to demonstrate the nature of the

two-dimensional information inherent in these observations. The frequency

differences shown on the ordinate of these records are the instantaneous

rate of change of phase with respect to the carrier, or direct signal.

The quantity measured is

_f = LkfR - _fD

while

V

_fR = _ sin 8

The Doppler shift of the direct signal, LkfD, may be calculated from the

known orbit of the spacecraft, thus allowing the angle between the veloc-

ity vector and the vector to the target, @, to be determined. Any given

frequency offset therefore determines a cone about the velocity vector of

half-angle e, in which the scatterer must lie. The intersection of

this cone with the surface of the Moon in turn defines a locus of points

on the surface which might contain the scatter. The intersection of sev-

eral loci, each determined from separate measurements on a single trace

at different times, provides an estimate of the locations of the scatter

on the lunar surface. It is a simple matter to show that this is equiv-

alent to the use of a linear phase term for determining the azimuthal
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position of the scatterer and quadratic term in the rate of change of

phase to locate the scatterer in range, as suggested in Chapter III.

While this represents an application of the idea presented in Chapter III,

it is not a complete use of the method, since in this case we are using

a number of estimates of instantaneous frequency rather than a filter

matched to the entire record to obtain the results. Thus it has been

demonstrated that two-dimensional information is present in the scattered

spectrum, but the full potential of the method has not yet been realized.

Figure 41 is a drawing of Fig. 37 in which the traces have been

identified by roman numerals. Figure 42 is a plot of the loci associated

with trace III in Fig. 42 projected onto the q_ plane of the standard

34
orthonormal selenographic coordinate system. For purposes of illustra-

tion we show the intersection on only one side of the orbiter's ground

track on the lunar surface. One division in Fig. 42 represents 17 km on

the Moon. This particular record shows not only the locations of the

scattering center responsible for the trscep but that the center itself

is resolved into two different scatterers, one that contributes to the

initial portion of the trace, and a second that comes into view near the

end.

The locations of the scatters are given in selenographic latitude

and longitude in Fig. 43 by the center s of the squares. The size of the

squares depicts an estimate of the standard deviation of the intersections

of the loci. These results have been published elsehwere, along with a

preliminary analysis of the probable scattering mechanisms responsible

35
for the observations.
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VIII CONCLUSIONS

In this study we have shown that astronomical bistatic-radars opera-

ting between a ground terminal and a vehicle in space may be used to probe

and study planetary surfaces.

The illumination of a planet with radio waves produces a set of

scattered fields above the surface, which, when compared directly with

the incident wave, may be processed to produce a two-dimensional map of

the radar brightness distribution of the surface of the planet. A crucial

factor is the use of the indicent waves as a reference when obtaining the

data on the scattered fields.

The resolution cell is variable in size and may be expanded to in-

crease the signal-to-noise ratio at the output of the processor. But,

for any given resolution cell, the inversions derived represent the

highest signal-to-noise ratio--in the sense of minimum variance--that

may be achieved with a linear system.

For a point source, the processor has analog interpretations as an

array of antennas, a tracking filter, and a one-dimensional hologram.

The processor for an expanded resolution cell is realizable in a

variety of ways, some of which represent physical filters, some of which

do not.

The hologram analog may be modified to realize the processor in the

case of certain special choices of geometry for the expanded resolution

cell.

In practical terms, it would seem as though the methods for collect-

ing and processing radar signals that have been given here can in fact

achieve most of the advantages claimed for bistatic-radar in the intro-

duction to this paper. If we consider the uplink case, a spacecraft

instrumented with a relatively simple, narrow-band, phaselocked receiver,

an antenna, some sort of data storage device, and telemetry readout

is sufficient for this experiment. Large transmitters and antenna sys-

tems to provide the illumination are already in existence on the ground.

Depending on the choice of radar parameters, such an experiment

would be expected to yield, in addition to its imaging features, data

on surface and subsurface structure on the scale of a wavelength. With
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further development of scattering theory and experiments along lines of

research already begun, it may even become possible to deduce the com-

position of a surface from a remote measurement of its scattering proper-

ties.

In view of the difficulties associated with the optical mapping of

Venus, the potential application of the imaging technique to the study

of the surface of that planet is of special interest.
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scattered fields (as measured by a spacecraft along some fraction of its trajectory)
with the expected signal from each point on the surface. The predicted azimuthal res-

olution in wavelengths is inversely proportional to the angle subtended at the target

point by the fraction of the trajectory over which the data are taken; in range the

resolution in wavelengths is inversely proportional to the square of the same angle.

The feasibility of the method depends on the use of the illuminating wave on board the

spacecraft as a frequency reference to achieve the requisite stability.

Physical analogs of the process exist as modifications of holograms and synthetic

antenna arrays. An additional analog is that of a bank of tracking filters, each of

which is adjusted to receive the signals from a separate portion of the surface.

The maximum-likelihood estimator for the brightness of a specific scattering area

in the presence of white Gaussian noise at low input signal-to-noise ratios, is a
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Abstract (cont)

Hilbert quadratic form with the expected auto-
correlation function of the signal from the

scattering area as a kernel. For maximum res-

olution (minimum area) this is equivalent to the
cross-correlation method for obtaining the bright-

ness distribution. Furthermore, this estimate is

efficient in the sense of being unbiased and of

having minimum variance, for the low signal-to-
noise ratio case.

The estimator may be realized with well-known

forms of time-varying or time-tnvartant filters,
or with correlators. A new realization is that of

a hologram scanned with a properly weighted illu-

minating wave.
It is concluded that bistatic-radars operatin!_

between a ground station and a vehicle in space

constitute a powerful technique with which to map

and to study planetary surfaces.
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